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NOMENCLATURE

n force oscillatio, frequescy in radians/s_c

phase of the transfer function W(w)

the inclination of a force at the rim to the normal

|_ force rotational frequency in reds/sot

n lose factor

p density

ao(_t)wTo(Opt ) normal and shear stress distributions in the

boundaryp(timc domain)

_o(@_w). To(@,w ) Fourier transform of normal and shear stress

distribution in the boundary

UOC* OOe_ TocPToB _odal)normsl ned shear stress

0 ec oet o oc oe

p,_ Lam_ constants_ equation AI.3

v Poleeons ratio

_l angular frequency (2_f)

:' _ the Fourier Transform of the angular acceleration

: :, at the centre of the disc

ax_ay the accelerations In the x_y directions at the centre of the disc
n rndlt|s of disc

AjnDDJn amplitudes of the nthdflatatton_und rotational modoe_ J=l,2

ClJC 2 dllatat£onaland rotational wave speeds
E Youngs Modulus

f freq uenc_

_(_) transfer inertance between a normal force applied to the rim

and the acceleration at the centre in the same direction

i /:i
I moment of inertia

Jn(Z) p J_(z) Bessel function of the first kind of order .p and

first derivative

k I d_ata_onal wevenumber

k_ rotational wevenumber

k longitudinal wave plate wavenumber
P

(iil)



m dlsc mas_

n clrcumferentlal inode number

PjQ normal and shear _orce applled to the dlsc riln

rjO plane polar co-ordlnutes

t tlne in secs

_(w) transfer inertancs between a net nnment applled to the _im

sngular acceleration of the centre of the dlsc

ulv dIiplacements in the x 911d y dlrectlons
m_

utv Fourler transform of the dlsplacements In the x and y

dlrectlc_s

u(r)0v(r) Fourier t_ansfor_ o_ the dlsplace_ents In the z and y

dlrectlons on the 8=0 radius

UjnJVjn Fotu'ler transform of x and y dlsplacenents, for the

n=1_ for 9 = O_ Jml_2.

W(_) Transfe_ inortance between n tnug_ntlal force on _he rim to

the acceleratlon In the sane d_reetlon at the centre of th_ dlsc,

'_i__ _

(iv)



l.O INTRODUCTION

The moving parts of a rotating machine, are usually an assemblage

of discs, as in a gearbox, or a simple thick disc or cylinder, as

in an e_tric machine. The rotating disc element is acted upon by

_n plane forces at the rim, which are responsible for vibration _t

the shaft at the centre of the disc. These vibrat_on_ are then

transmitted through the bearings to t_ _achino casiu_ where they will

cause unwanted sound radiation or vibration transmission to further

connected structures.

The objective of this report is to consider the first part o_ the problem,

namely to analyse the vibration response at the centre of a rotating

disc which iB _ubjected to in-piano,normal and tangential forces at the rim.

Such a disc will_ of course, behave as a rigid body at low frequencies,

with the acceleratl_ at th_ centre in phase with force at the rim.

However I to analyse the response at higher frequenelo_ it iB necessary

to sons,dot wave motion within the disc.

The inplane vibrati¢_ of an elastic solid _edia arises from indepsndent

contributions of two types of wave motion, namely dilatations1 waves

(which are equivalent to acoustic pressure waves in a _lquid), and

rotational (or shear) waves _i,2]. The vibration anslysls of thc

disc therefore involves two uncoupled wave equations (associated with each

wave type), expressed in plane polar co-ordlnates. The Eeneral

solution to aaeh of these equations is s su_ation of srthogonal :odes.

Each mode has a Eessel function variation of order n in the radial

direction and a sin n9 or cos nG variation with the circumferential

direction (where n is an integer between 0 _nd_,

Several authors have worked in thla f_eld previously, In Eeneral

they analyse a stationary dlsc sub_ected to a rotating forcing point

as opposed to a rotatln_ disc and a statlon_ry forc±n_ point. This

simplifies the proble_ by ignorinE Coriol_s forces. The same _pproach

is adopted here.
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Eringen 13J provides general expressions for the vibration of a thick

disc or cylinder subject to dynamic forces, llis approach is largely

followed in this report and his results applied to the specific

problem of a point Oscillating force applied to the disc, with

normal and shear components. In references 14,5,61 thin discs

or thin annular rings are analysed and resonance frequencies

computed. The dllatat_nalwaven in a thin disc travel more slowly

then in e thick disc as there is less lateral constraint, therefore

the resonance frequencies associated with dilational wave motions

diffsr slightly from those of a thick disc. The rotational waves

are the same for a thin or thick disc.

In this report the analysis applies equally to a thin or thick

disc, but resonance frequencies and transfer fuections are

only computed for the thick disc case.

The approach adopted in this report was first ts calculate the

transfer functions between normal, or tangential;forces at the

disc rim md the inplane acceleration at the centre of the disc.

Next the Fourier Transform of the excitation due to an oscillatory

rotating point force was calculated; and finally the excitation

and the transfer functions were combined to predict the response.

The greatest simplfications that arose from the transfer function

calculations was that only wodes with a coeg or _Ing circumfsrcntlal

vsriation actually contribute to _he lnplane _cceleration of the

centre of the disc. It was also found that a normal force acting

in the disc rim predominantly exciting dtlatat_n_ wave motion,

while a tangential for_e _ainly excites rotational wave motion.
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2.0 TRANSFER INERTANCE BETWE,EN THE RIM AND THE CENTHE OF TJIE DISC

A cO_plo_o an,lysls o_ the vlbr_tlon of a disc subject to Inpl.ne

boundary forces is presented in Appendi_ A1(whlch is largely

a m0dlfled verB_on of refer0nce 3 ). The result_ from tha_ Sectlon

wore applled to obtain an expression I for transfe_ Inerta_ce $o the

centre of the disc (_er_ance = acceleratlon/force). UB_nE a

diBital computsr theae oxpres_ion_ were _pp1_ed _o Rive numerical

data _hlch are dlsplayed Er.p_cally.

The a_alysls _ssumes a thick dlsc_ for whlc_ the _la_at_unal wave speed is

grouter than for • th_n disc (because of _o_sson's ratlo effects). However_

the theorotlc_l form o_ _he results is similar for both the thin or

t_ck d_sc_ the only difference b_ng the value of the d_latlonal

w_vo DUNbO_.

2,1 The Theoretical Form of tho Transfer Iner_ances

T_O fi_e belo_ Ei_ the sIEn convention for the analysis:

fY
T

u and v are th_ displacem_n_s :_he x l_d y directions. _o _nd To

a_e _he surface stresse_ applied _o _he rim i._. _hey _c_ _n thQ

direc_on of the applied forces.



The displacements at ,ny point on tile x axis E(r), Vfr) (in tile

x and y directions) are found by setting e to zero in equation

AI-15_ giving
oo

_(r) = r v'-zn(r )
n=O

(Z.l)

n=O

from which lz can be seen that the displacement st any radius r,

In the sn_etlon of modal contrlbutlons. _ and _ are t|_e Fourier

Transforms of the time dependent displacements v(t) deZined as

'_ = v(tle at (2.2)

where _ is the angular frequency end t the time.

The funetionsU2n(r) and _(r) are the dlspIauemunte made in the

x and y direetionn at @ = Oj for the n th mode. Thes_ c_n be seen in

equation A1.5 to be related to Beesel Functions of order n_ (Jn)-

•. '_ The displa_emente in the x and y directione at the centre o£ the

disc are simply found by substituting r=O in eqnation 2.1 (coef_ieients

in Equation AI.I_) giving

"V(O) = - All gll r = 0
2k1 k2

_(o) = - A21 B21 (2.3)
2k1 ks

ehera k I and k 2 are the dfl_at_omal and rotational wav,_ numbers

r0epectively; and All , A21 ere the amplitudes of the dilational

all mode and Bll , B21 are tile empliCudes of the rotational n=l mode.

(Equation AI.14).
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Only Che _=i dlla¢lonal and roCatlonal modes (which have a cos 9 or sl, G

circumforentlal vAria_ion and a J1(kr) radial varlat£on) con_rlbute

to the dlsplncom@nt n1_ the centre o_ the dlac. This _s because

the dlsplacement _s proport±onal to the gradient o_ the dilat atlonal

mode shape and rotational mode shape, and only the n=1 Bossel

_unct_.on (J1) has a slope at r=O. Thls is ±llustrated in the

f_gure_ below.

_ D.=l mode

The mode shape :_or ('_,1)

dfl.ata_&l or rotational

........... _ode; 2 modal e£Pcle5

(includlng central point)

,'l (_r) _ .Ode1 dl._ter

_-__"".''_/_'_///':i+"::""\. The _pprox. corresponding displacement...... mode shape adopt_ =(1,0) pattern

_,+.,+:_ _ /+'..+] with a finit(_ VSlUO at the centre.

The d_splaceme.ts _(o) _nd _(o) at the centre of the disc can be

wPitten in ter=_ of the applied forces at the rim by substStuting

for All * A21 , Bll _ and B21 in equation 2.3 with the n=l values of

equaton A1.19, giving

(2.4)

F
I
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r S21(k2a) Sll(kla) ]where _{w) = 2_D '[ 2k I k2

_(w) - " " _ zkl + g2gUD

D = Nli(kla).ggl(kgn) - N21(k2n).Sll(kla)

_t _os are related to the normnl forces applied in the x and y

directions and Too and Tos are related to the tangential forces

applied in the y and x directions. These terms are defined in

Equation A1-20 end discussed in Section 3,

On substituting for Nll J Ngl , Sll and S21 from equation A1.17,

the transfer innrtances from the rim to the cent_ of the disc

becomes, after some rearrangement,

1 k2a" Jg(k2 a) " 2J2(kla)
• , 2j 1 42.6)

H(_) = _ ¢. Jl(kla).k2 a J2(k2a)'_2 a (k2a).2Jg(kla)

, -2J2(_+ kla(k2/kl)gJl(kla)-gJ_(kl a)
• :_ W(m) = _. 42.7)

2Jl(kga)2

El a 'Jl(kla)'k2aJ2(k2a)- k2 a '2J2(kla)

whore (kg) 2 _+2N
kl = _ and m = p_n 2 (2,')

H(_) and W(_) are the transfer Inertancen between a point force

on the rim and the acceleration response in the same direction

at the centre of the disc_ as defined in the figure below

6



_=o _= ot

w(=) = - =Z_v(°)q F _(o)_ = o=0 P=O

_1' _ are the Fourier Transforms of the applied forces to the rim

2.2 Computational Details

The transfer inertances H(_)p W(_) and _(_j) in equations 2.6, 2.7

and 2.8 were plotted out using a disitnl computer.

These functions are complex functions, with an imaginary

component associated with the material damping.

The effect of the material damping was included by assuming that

complex modulus of elasticity _ = E(l+iq), where _ is the hystoretic

leas f.otoro This complex modulus of elasticity in responsible for a

complex wuvenu_bor_ k2 calculated thus (using A1,3)

= k2(1"'-2) = (1+111)



likewise

_i = kl(l'" 2i_n)

These values for complex wavenumbers were used as the argument

of the Bessel Functions Jl(_a), J2(_a) which control the

transfer lnertances. The complex Bessel functions J1 and J2
are shown in Figures 1 & 2.

The expressions used for the Bessol Functions in the computation are

high and low frequency assymptopic solutions (see for example 18[).

The transfer functions were calculated for values 0 <k2a< 20 or

O <k2a < I00. k2a taken as the independent variable. 2048 data points

were used to cover these frequency ranges.

The transfer functions were calculated for a range of kl/k 2

ratios, including those for aluminium and steel.

2.3 Discussion of the Form of the Transfer Inertance H (u)

:. The normal force transfer inertanee, equation 2.6, is n function

i of several variables; the mass of the disc m, the rotational wavenumber

k2, the Poissons Ratio v and the material loss factor, n. The

significance of each of these variables Is discussed in the following

sections,

"(1) The mass of the Disc

H(_) normalised to the disc mass, is plotted for v_rlous Polsson's

Ratio values in Figures 3-8. It can be seen that at low frequencies

when k2a _1 the lnertance taks the value of a rigid mass. For

steel with a flilstattonal wave speed of 5700 m/s, kl/k 2 = .55,

a 2m diameter disc would behave as a rigid mass below 504 Hz.

(£1) _qxe Potssons Ratio of the Material

Figures 3-5 show the transfer tnert ance for four differeat

values of Polsson's ratio u. The Poissons ratio is related to

the ratio between the dilateral wavenumber (kl) and rotational

wavonumbor k2P for a thick disc by

8



/ 1-2v
kl/k2 =/ 2-2u (2.10)

If the disc is thin the rotational wavenumber is unaffected hut

the d_ata_kllal wavenumber becomes that of m thin plstej longitudinal

wave k and
P

_E= . (2.11)
k 2

All the results in this nnalysls apply to thick discs but the thin

disc results could be found uslnff the ratio 2.11 in Equations

2.6 and 2.7.

Figure 3 dlsplays the H(_)j when only dilatlonal wave_ are present

la the dlscj as would occur for a material so soft in shear as to

be liquid, The dilstat_onal waves correspond to acoustic pressure

Waves,

This function is obtained by setting _i/k2_ 0 in equation 2.6_

giving

1 1
_(_) = _. (2.12)

2_la).Jl(kls)

The resonances occur when Jl(k]n) = O.

In FiffuTe 3 the transfer ine_tsnco Is displayod on s scal_ such that

kl/k 2 = .55 (the ratio for steel) which means that this graph dlsplays

the contribution to the transfer instance of a stem] disc from the

dilatable1 waves alone.

In F£guros 4_5,6 the transfer _nertancc is plotted for Poisson'm

ghtlos of O_ .28 and .33 rnspectively. A Polsson's ratio of

.28 corresponds _o steel and .33 to alumlnlum. Figure 5 shows

i _(_) for a steel disc (which has both dilat_m_al and rotational

wavm transmission) obtained frol,equation 2.6 using kl/k 2 _ .55.
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This plot is compared with the previously discussed case of

dll_at_onol Wave transmisBion alone (Figure 3), It can bo se@_

that the _latat_vnal motion is responsible for th8 low treguency

rigid body motion (k2a6 1)p and _lso for the overall trend.

Howovor_ lndisp@rsed botw@_n the dllat_io_al wave resonancos

(denoted d) there is a train of approximately equally spaced

resonnnces associated with rotationa_ way@ mo_lon (denoted R).

The steel is more _obile in rotational motion than dllatational

motion (kl/k 2 = .55) which is reflected by the fact _hat there

are almost two rotation_l resonancos to each c_l_ta_nal resonance.

Indeed the first significant resonance of the disc is mainly due to.

rotational motion and occurs when kla = 1,54 or k2a = 2.79. For

a 2m steel disc of dilational wave _peed 5700 m/s this would

correspond to _ frequency of 1393 _Iz.

In Suctiox_ 2.4 it is shown that the 1'otational _esonanc@s occur
I

when J2 (k2a) = Oj which for k2a >.1, is approximately when Jl(k2a_=O.

The total transfer function H(_) can therefore be regarded as the

superposition of two sets Of resonant rosponseBf one associ_ed with

dl2ata_c_al _0tion_ the other associa_ed with rotational motiot_.

Figures 4 _nd 6 show H(_) for two ditferent Poisson's ratios v = O

and _ = .33 respectively. It can he _@on the k2_ value associated

with rot_tional motion resonances are almost independent a_

Poisson'_ _atio, as i_ clearly lllu._treted in Table t and Figure 7.

This is u_ course b@caus_ the v_lu@s ape plotted as a function _f

k2a. The aotual _otation_l way@ r@sonane_ fr_u@_cies decrease with

Poisson's ratio according to equation A1.5.

C,

f = _ (k2a) where C o = f/ E (2.13)
" / 2p(l+v)

k 2 is Constant

i0



Howover_ it is seen in Figures 4p6 and 7 that the dilatienal

_ave resesanco frequencies increase relative to those associated

with rotational motioe| with increasing Poiseona Ratio,

The rasonance frequenoies are given in Table 1 for various

Poteaons RatioB_ althoa_ it must be stressed agais that these

rafere to thick discs. For thi_ discs the resonance frequencies

are tabulated in Table 2_ which are taken from 141,

The precise dilatlonal or rotational mode shapes corresponding wld_

resonance frequency in Table 1 have not been caleulated_ but the

number of nodal cireules (s) and nodal diameters (n) is indicated

in FigLtre 7. All modes whicb contribute to the displacement of the

centre have only one nodal diameter _the dilatiosal or rotational

mode shape as dlsconaed in Sec¢ion 2.1.

Figure 9 sbowsH(_) for a steel disc (_ = .33), loss factor .02_

plotted _or 0 <kRa _lO0 t _r0m which it can be seen that the dampiJ_g

heavily attenuates the contribution from the rotational waves

leaving only the effect o_ the _latathmalwaves. Resooance frequencies

occuriog when Jl(kla) = O. Note that the modes are evenly exeited_

the centre of the disc alwayJ being _n antinode for these modes.

2,4 The form of the transfer Inerta_ee _(_)

W(_) the transfer inortance between a point tangential force at the

rim of the disc and the acceleration response in the same dlrecti_n

at the centre of the disc is given in Equation 2,7. This equation

is e fwtctton of the disc maee_ the P01asons Retie and the damping|

is dt_elmaed in file following paragraphs,

(I) The Disc Mass

_(w) and H(_) are plotted together in Figure 15, a comparison

reveals that at low frequaneleB where k2a _1 they both take
1

the name value of _ _ the inertness of a rigid mess.

ll



(ii) The Effect of Poissons Ratio

The resonance frequencies of the W(w) function and the corresponding

mode shapes are of CourBe the same as thos_ discussed previously

for the H(_) functien (Table 1, Figure 7). Ho'_ever, the degree

of excitation of various modes is very different for the two functions.

The W(_) function is dominated by the rotational wave motion_ whereas

the H(I_) function is dominated by the di_tatbnal wave motion.

The dominance of tile rotational wave motion over the dilatational

wave motion is clearly seen in Figures 10-14. Figure 10 displays

W(w) when the material l_ very soft in shear. For the computation

it was chosen that

kl/k 2 = 0.01

which is equivalent to _ ÷ .5. For this case th0 rotational wave

resonances displayed occur at much lower _requeanies than the

resonnnces associated wSthdtlatat_n_ wave behaviour. Figure 1_

is therefore the transfer inertance _(_) with no d_latat_n_ wave

contribution.

However, inspection of Figures 11-14 reveals that for all value_

:i of PoisscnB Ratio W(_) is always dominatvd by the rotational wave

._ motion, with behaviour closely resembling that of Figure 10.

A suitab2c approximation with which to describe the rotational

wave motion contribution to W(_) is obtained by setting kl/k 2 = O.
Under this condition Equation 2.7 becomes

_(_)= I 2J2(k2a) " (k2a)2/2--. (2.14)
m

k2a(J_(kz_))

where
t

- 2 J.(k.a) .
J2(k2a) = Jl(k2a) _2a _

I
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This function is displayed in Figure 10, The rotational wave
e

rosonauoes occur when J2(k2a) = O, A fsrther approximation can be

made if kza>>lj then_(_) becomes

2_aJl (k2s)

The equation is simllar to the approximutios for _(_) in Equation 9.12.

Figure 15 competes H(_) and W(_) for a steel disc wlth a loss factor

of 0.02. The two functions a_sume choir simplified forms

(Equations 2,12 and 2.15) for k2a >20. It can be seen also that

W(_) has almost twice as many resonances as H(x) and Is usually

st least twice as large as _(u), This reflects the fact that th.ee

vibration at the centre of u disc is usually at lense twice as

sensitive to tangential forces spplled to the rim us compared to

normal forces applied to the rim.

2.5 The form of the transfer Inertance T(_)

The rotation _ at the centre of the dlse call be deduced by

setting r=O in Equation A 1.14. Only the n=0 modes have any confributlon

at r=O_ ss all Bessol Fenetloss of the first klmd, spur_ from Jo'

are Zero at the origin. The rotation of thn centre thcref51_ b_omes

_' =BIO (2.16)

which on substttstion for hlO from equation A1.9 gives

-- 1 - (2.17)
qJ = 4U ' $20 ToC

where Toc Is proportional to the tangential force apDlted tn the

rlm (see Equation 3,18). 0n substituting for _e (from equatlmn AI.]7)
and performing so_e msslpulatlmn.

13
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1 1
_(_) = - =I 8

( •J2

whe_ I = ma2/2_the moment of inertia area of the disc about the

centre. _(w) is the transfer lnertance between a unit moment

applied to the disc r_m, and the angular acceleration at the
1

centre. At low frequencies _(_) = T as seen in Figure 16.

The reaon_uces of the n=O modes occur when J2(_a) = O, and

therefore occur at different frequencies from the resonances in

the H(W)_W(_) transfer inertances,

These resonant frequencies are _he same for a thin or a thick

disc as ther_ is no dLl_mal wave dependence.

In Figure 17 the transfer function _(_) is plotted O <k2n -100,

the high frequency value becomes large compared to H(_) or W(_)

as it has a (k2a) 2 dependence (Equation 2.18) as compared to a

!_i k2a dependence (Equation 2.6, 2.7).

.y

I •

I
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3.0 THE EXCITATION FUNCTION

Section 2.1 was a derivation of the response of the centre of

the disc in terms of: the point transfer functions H(_), W(_)

and_(_) (between the centre and point forces on the disc rtm)_

and the frequency dependent stress distributions _oc(_), _os(W)

=-o_)and T_s(_)notingoverthediscrle. Thefor=of_(_),_(_)
and _(_) was dleot_Ssed In Seot$ons 2.2 - 2.4 nnd it now remains to

consider the fo_ of the stress dlstrlbutlons aOCPeospTooJTOS in this section.

The a_alysis coneeetrates oe the specific cu_ efa point force

ose$11atin E at u rnds/sec which rotates the disc at fl rnds/sec.

However_ the same procedures could be applied to more geoeral

stress distribution.

The stress fu_ctions _oc P Sos_ Toc nsd Tos _ found to be

dependent upon the numbsr of wavelengths _n* in the circumferential

disc mode shape, thsrofore as an introduction the simpiasts_ of

an oscillatory rotating forcs acting upon n rigid disc is considered

first (as the motion is in phase over the whole body).

t
3.1 The Excitation Function of an Osclllalor_ Rotatin_ Force

actin_ upon s rt_id disc

P cos_t

/_ fl rads/sec

The force P cos_t rotates the disc at fl fads/see. Resolving

the force into x and y coordinates gives

Fx = P cosat.cosGt
(_.1)

F = P oosst.sln_t
Y

15



Those two forces can be combined using a vectorial notation

by denoting a unit vector in the y direction as ip wber_

i = e-Y_ i.e.

F x +]Fy = P cosat.e l_t (3.2)
_(t)

Equation 3.2 is therefore a complete description of the magnitude

and direction of the force at any times the i term is not merely

a mathematical device but has a physical meaning.

A Fourier Transform operation performed upon Equation 3.2, is

defined

_ -i_tF(_) = (t)e dt (3.3)
,_co

-iwt

where o can be regarded as a vector rotating in a clockwise

direction. On substitution of equation 3.2 into equation 3.3 and

performing the integral by moans of the identity
m

. e -i_tdt : 2_ _(_) (3.41

the Fourier Transform of the excitation becomes

_(_)= P_ [_(_+_)) + (S(w+(m-_))] (3.5)

which iB purely real, hinting at its physical interpretation.

Equstlon 3.5 diBp_ayed in graphlcal form is shown below

a-fl 0 a+fl

clockwise anticlockwise

The Fourier Transform reveals that the excitation functiom in

Equation 3.2 can be regarded as the suporposltion of two forces

of constant magnltude_ one spinning antl-clockwlse (_ positive)

16



wltl_ frequency a+fl reds/eat and the ether spiuning clockwise

(_ negmtive) with frequency _-_ fads/sac°

Therefore this particular application of Fourier Transforms provides

a physical interpretation to negative frequency.

_he acceleration response of the disc is simply found by multiplying

_(_) by the mess inertance _.

1
_(=) = _ . T(=) (3.6)

By performing the Inverse Fourier Transforl_ giVeCt aB

;(t) = _-_ F a(=).ei=t dt.

the _ccelemt_n in the td=_ domain simply becomes

P _ t.e t_t
_(t) = _ . cos (3°7)

ae might be expected.

It must be noted that thin approach Is only possible when the

disc is symmetrical and the trnnsfer _unction
is identical

in the x and y dimeetionB, and the notions in the two directions

at0 uncoupled.

3.2 The Excita¢ion Functions for the disc modes with n

ci_cumferenttal wavelen_hs

In Section 3.1 only rigid body motion wa_ comsidersd w however

it is the intention bern to find the e_citation levul of disc

modus which have n _evelengths around the circumference° For

17



this analysts it is not sufficient to define the net force acting

cn the disc (i.e. P in Section 3,1) but the stress distribution

over the surface must be stated.

q

A general normal stress distribution f(_) rotating the disc at

fl r_ds/sec and varying in _agnitudc _C _ fads/sac could be written _ts

ao(ejt) = f(e-_t), cosat

I 0 <9-1_'t < 2

Howsver only _ point _Qrco shall be considered here! although

• the same analyals could equally be applied to other stress dlstributiona.

Haviag Baid this_ it will become clear lat_ that if only the vibration

of the cenSro of the disc is sought then on_y the n_t force is

required, rather than the preclse stress distribution.

Only _ormal forces will be considered |.n this unalysls_ but the

derived expreasiona will be equally npplioable to the ahea_ forces.

For a point force P coast acting normal to the disc rim_ and rotatin_

at fl rada/aec e the stre_s distribution around the dts_ rim can be

represented by

_P
_o(e,t) - _ .cosat .6(e-_t) (3.8)



where _(_-_) l_ repeated at 27 interv.]s of (O-f_). The perlndlc,_{ly

applied _(O-flt) fLmctlon can be represented by . Fourier s_rle_,

thus

6(O-fit) = ao+ E a n coin(O-fit)* _ bnsinn(O-flt) (3.9)
n=l n=l

fwhere 1 _(G-at)d(_-l,t) = 1

f1 1

! an = _ 6(8-fltlcosn(O-flt).d(9-fit) _-7
I

1 f 6(9-flt)slnn(e-fit).d(9-fi¢). = 0i bn = 7

or

i _(e-_t) = 1+ ! _ cosn(e-_t). (3.1o)

Therefore the applied stress can be written as the product oI cosine

functions

:J P i
il CO(OPt) = -_ .cosa¢(_÷ E cosn(e-flt) (3.11)
t _=I

which using the coslne addition rule becomes

[ ° 1oo(9,¢) = P ' cos_t+_ E cos((_+naIt-nG)+cos((_-n_++ng) (3,121 i
2a_ _=1

By Inspection of the argument of the cosine terms it can be seen

that _or oath _ode nu_bo_ n, two COS _ ctrcu_f0rel_t_] stres_

distributions occur simultaneously; one rotates entt-clockwtso at _/n+fl

rad_/_ec, and the other rotates clockwise at _/n-fl rads/sec. For n=O

the d_se is subjected ¢o _ uniform pressure over the whole surface.

Equntton 3.1_ can be converted into the frequency domain by taking the

Fourier Transforms defined in Equation 3.3, which (ustn_ identity 3.4)

_lvu_

]0



inO

+ _: o-in° I'_¢_-_-_a). ,_(_-o.-nrz):],j" c3.z3)
n=l

This function is the boundary stress applied in the first ot

oquat$oms A1.16 amd Equation AI-18_ and it was shown that the

particular stress functionm aoc and _e_ acCin_ in the x and y

dJ.rottlons tan'be found by applying equations AI.20j thus

,f= _o (Op_O cosnO dO
OO¢ _ O

2_ (3.14)

age= I J _O (O,_)rain nO dO , _-
0

A noster reprosmntntiesj is to use the I vector to indicate that

m r L _

the stress figs is in the vertical direction, and thus the
_tr_ss

: , functionScan be combined voctorslly as

_n tnO

Ooo•iOos I:o= (g_) e dO. (3.15)
0

fOr_o(OUw) (Equation 3.13) Into 3.15 and performingBy subs tituting

the integration using equation 3,4_ the stress function coo+loeB for

i the mode with m circumferential wavelength_ becomes

The lntorp_'etation of th_s is seen in the figure bel,_w
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2 45n 0 3 n

P p
a a

clockwise 0 aanticlockwise

(i) It can be seen that each modes is excited equally by the
P

etz'ees of magnitude _.

(it) At each excitation frequency a, and excitation rotation speed n

_nd for each modenumber n, the disc is excited simultaneously by

two stress distributions each vith a spacial dependence of cos he.

One stress distribution rotates anticlochwise at a/n_ fads/sen and

the other rotates clockwise at u/n-fl reds/see, as shown below.

excitation excitation
fro UCSC _-_, frequency

These two rotating modes are associated with)in a stationary plane

of _sference_ two frequencies;a+n_ and _-nn respectively.

(iii) When _ IB sere Lhu two stress distributions associated

wih the n th mode rotates in opposite directions at the same frequency.

The superposition of these two distribution results in a stationary

or standin E wave for_j as is normally associated with vibration

of static structures.
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(iv) If the excitation frequency _ is zero, i.e. e constant

rotating force is applied, then the n th mode is excited only in a

anticloekwise direotion eta speed of n_ fads/see with nn associated
frequency o_ nfl reds/see.

(v) For the analysis of the vibration at the centre of the disc

only the n=l mode contributes. The excitation function is

normal force loading. Likewise the shear force excitation is

I

where Q is the shear force applied at the same point as P.

The vibration at the centre of the disc is derived from the net

j force applied to the n=l modo_ which is the net force applied

I to the discj as can be _een from Equation 3.14. Therefore

_i!: the tern P and Q in_quations 3,Z7 and 3.13 refer generally to

the net normal and shear force applied to the disc, irrespective

of the load distribution.



4.0 THE ACCELERATION RESPONSE AT TSE CE.NTS_: OF T|iE DISC

In Equation 2.4 the Fourier Transform of the ncceloretion at the

centre of the disc In the x and y dtrectlon_ is written as

ay = -_2Vvffi_(_).a_. ao8 + w_).e_._'-oc (4.1)

ax = .2_.=g(_).a.. _ -_(w). a_7osOC

Rovevor_ because of the _metr7 of the disc in the x a_d y dlrectlone

the a¢coloraciene In the x and y dlrectlocs can be combined

vector£ally thus

_(_) = ax + iay (4.2)
If

t-g
where i Is o _ a unit vector in the y direction; _oc' _os _ Toe and "_cJ_

can likowieo be defined in the manner of equation 3.17 end 3.18 as

a'--o(_ ) = a--Oc + I _o. (4.3)

Shen equation 4.1 can be o_rossed as

a'(_) = e.T_.g(_l.cra + t,'eW(_)._o (4.41

The acceleration tn the ea_o insta_tuneoue direction _s the force

glven by Re{_(w)}. While the accoler_tlon leadlng the f_c_ by

is glvec as

Zr_ {'_(_) } (d.,_)

Th_ Fourier Transform of the acceloratlon vector _(_)_ _osu1tI_g

from the rotating oscillatory _rceeP(nor_al) and Q(shoar). is

found by _ubstltuttng for _o and _o (fro_ equations 3.17 and

3.18) into VqL;atlen 4.4 giving
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a(_) = (U p._(_)÷i_(to))(6(w_-_) ÷6(_-_-_)). 44.6)

The response in the time domain is found by taking the inveree

Fourier transform of equation 4.6 i.e.

= i_t

a

_(t) =_ (PoH(_+iQ.W(_.).C6(_÷a-fl)+ (_-c-_e d_ (4.8)

which on performing the integral ElVes

-i(_-fl)t

o(t) = _ (pH(-a+_)+i_(-_+_))e (4.9)

l[n+_)t

It in posBlbln to proced_ further by making the _ollowing simplication.

H(_) _nd_(_) are complex _unctione of (_) havlng bath a real and

: : imaginary component. For physical s_ruetures the real component of

the inertance is symmetric_l about the _= 0 poin% while fhe imaginary

' component of lnertance is ansymetrical about _=0. Therefore the

i slmpln relationship exists tha_

where * denotes the complex conjugate.

On making this nubstitution into Equation 4,9 the complex acceleration

in the time dom_in_ namely

_(t) ffiazCt ) + i ay(t) (4.11)

beoone_
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-i(a-fl)t

(4.12)

i(a+fl)t

+i (p._(a+_) ÷ i_(a+fl))e

If an inclined force _ acting on the rim has normal and shear force

components as shown below

P

P and Q can be replaced by

P = F cos _ (4.13)
Q=Fsin_

4.1 Special Cases of the Response at the Centre of the Disc

The general expression for the response of the disc can be simplified

for a few special cases:

(i) at low frequencies when kgn ( 1 the disc moves as a rigid body_

and S(_)l H*(w)p W(_) and W*(_) are all equal toll as in Figure 15

between points a end b. The response at the centre of the disc to

a force inclined at _ radiar_from the normal is given from

equations 4.12 and 4.13 as

i(_flt)I
_(t) =F e cosnt (4.14)

where tile applied force vector was

Fci(_+flt).cosat (4.15)
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The response in the x and y directions are modulated cosine waves

F
ax(t) = _ cos(¢+flt) cosat

(4.16)

F sin(_+flt) cos_t
ay(t) =

as shown in the figure below

cos(O+_t)

\

The acceleration tragectory on the x-y plane of on oscilloscope

SCP@On would be, for n=8_D
Y

(tt) Between points b and c in Figure 15 it can be seen that

the shearing force transfer inertanco _(a_) is much greater

than the direct force transfer tsortance. The transfer

functlon W(_) changes only Krndually with fraquoscy, therefore

W(_)= W(_-_) for _>>fl. Also for frequenclos outside the

resonant regions _)= W*(_) = IF (_)[. Therefore in this

region the response takes the form

_(t) _ rsin;a.l_(_) [ .e cos _t (4. 17)

where the force vector was F ei(flt+P)cos_t
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If

The response therefore lends the force by an angle of _- _.

Yor the alternative cnne when H(w)>> W(_) the zosponse would he

_(t) = F con _.l_(_)J.e i_z canat, (d.ZS)

indicating a lag of _ behind the force vecto¢ In both eases

the responses would take ¢he form of the previous two figures.

" (+H) When the excitation frequency _+Q is equalp or very close

to a resonance frequency of the disc (for example point d, Figure 15)

only the tern containing _+_ in expression 4.19 are strongly

excited. The aeoelerntion response then takes the for_

i(s+_)t

If it is now assumed that H(a+_) is negleoted_ on account of its

relatively small size; the acceleration response can now be written

as

;ct)o_1_(_+a)l."_÷¢°÷a)*÷½) (÷l_)

where

I ;(a+n)le iB = g(a+a)

This is = vector rotnting is the anti-clockwise direction ut a+_

rndinns/aec_ i.e. the responsep is due to tb_ disc, in an n=l

mode shape spinning at _+_ fads/see, as shown below

°_ i__ _/_

of ce._

I I _,_ I I_'



The precise phase depends strongly on B, which changes rapidly

through the resonance region. The acceleration tragectory

displayed to the x,y axis of an oscilloscope is a circle.

_+_ fads/see

Wh_u the other excitation frequency _-n coincides with the resonance

frequency there is a simtiar result except that the ncceleratton

vector rotate_ in the clockwise direction.

4.2 Response at the Centre of the Rotating Disc

All the previous analyses have been concerned with a stationary

disc subject to a rotating force. Rowevsr, tbo initial _ntentton
i

of the work was to solve the vtbratoo of a rotating disc subject to

"" ' a stationary oscillating force. The general solution is easily

: fotmd by multiplying equation 4.12 by e -iGt which effectively applies

a clockwise rotation ¢o the disc. The solution becomes

;(t) =_ (P._ (C-_) +iQ_ (_-_))e l_t (4.20)

I +_ - - iat(P.H (c+G) iqW(a+_) eJ
to a _orct_,g function Fel_cos_t.

(1) In the mass controlled region the response is

"_¢(t)= _ e .Coopt.
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(it) In the non-resonant region, (see Equa$ion 4.18) the response

is

j"l_+-oe

:g



5.0 CONCLUSI ON_S

The results c_un be su_arlsed into three sectlons_ namely;

the transfer fttnctle_s_ the excitatlonj tile response at tile centre

of the disc duo to the oscillating rotating force,

5, 1 The Transfer Function

(i) The Transfer Function H(_) between a normal force and tile

acceleration response in the same directionj st the centre of the disc

is largely governed by the dllatationalwave motion. When kga <1 the

disc behaves as a rigid _ass. Resonances associated with the

dllatatimalwave motion occur approximately when Jl(kl a) = O.

(ii) The transfer function W(_) between a _angential force and

the acceleration response in the same direction at the centre of the

disc is dominated by the rotational wave transmission. This is

responsible for the mass-like behaviour for k2a < 1. Resonances

associated with rotational wave motion occur approximately when

J1 (kg a)=O'
!

(ill) The W(_) and H(_) transfer functions are comprised only of

i Bsssel Functions of order one (n=l) (which are associated with

cose or sine circumferential mode shape).

(iv) The first resonance frequency arises from rotational

wave motlonj when kga_ 2.5 (for steel).

(v) In general_vibration transmission to the centre of the disc

is greater from a tangential force than from a normal force (i,e.

(W(_) tends to be g_eater than H(_)),
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(vt) Angular acceleration at the centre of the disc is solely

caused by n=O rotational modes of vibrazion (those which have no

variation in the 0 direction). When k2a_ the angular acceleration

is controlled only by tee disc moment of inertia. Resonances

occur approximately when J2(k2a) = 0.

5.2 The Excitation Function

(_ A point force which oscillates at frequency arads/see

and rotates the disc in an _ntlclockwise direction of flrads/sec

excites each mode at 2 different frequencies. A mode with n wavelengths

in the circumferential direction is excited by an antlelockwlso

rotating stress distribution at_q/nradc/sec, and by a clockwise

stress distribution at fl-q/n fads/sac. Each mode is excited at the

name level by a point force.

(i_ The motion _t the centre of the disc is only dependent upon

the net force acting in _he disc rim, and is Independent of the _oad

distribution.

5.3 The Response at the Centre of the Disc

i
(i) For a rotating disc and a stationary oscillating force

the acealsration at the centre of the disc is necessarily in phase

with the applied force (whatever the direction) nt the rim of ths

dlscp when the dlsc moves as a rigid body (k2a <l).

(1t) When k2a >l _ if an inclined force is applied to the disc rim,

the response at tee centre of the disc will move in a different

direction from the applied force. The response will however, be a

vibration in a single direction provided a resonance is not excited.
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(ill) It the excitation freq_zency _ rnds/soc coincides with

rosonance froquency_ the cQntro of the disc will ndopt an

antLclockwise circling motion at _ r_ds/sec. Ltkewiso i_ the

excLt_tion _requnncy a-_ rads/soc coincides wtCh a resonance

_requoncy tho centro of the disc will adopt a clockwise circling

• ottoD of _ rads/_ec.
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APPENDIX AI: Formulation of the Proble_

AI.I The dyna_le analyses of isotroplcj homogeneous two

dlmens±onal solids is best por£ormod in torms of 'dilatation' 'E

(or volume expansion) at a point and tho 'rotatlont_at s point.

Expressed in ter_ o5 cartesian co-ordleatos for the elegant

bolow y

_X

au _v

¢(x_y_t) (the total element strain) =_x +_y

_(xjy_t) (the average element rotstian) = i_-_ _u)

Alternatively in pl_ue polar coordinstee_ the displacements

' _ £(r,8_t) = 1 _ av I!,: ¥ _r(rU)+ 5"_ i

(AI,I)

:;_ _ _(r,e,t) - Trr T_rCry) - T#

u(r,O,t) v(r,O,t)

who_e U and v sre She displacements in the r and 0 dlrectJonB_

as seen Ln the _lgurs below

,y
f__, _ \ .,.%r

b

i

Figure Al,1
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The Hookes Law relationship on a plane polar element is given

[Ref 1 p288[ as

8u _ 8u 8 (v) (A1.2)

_v
o99 = he+ 2_. (_+ u)

where k and p are defined in II_plI,4971 for a thick disc, as

A vE E, _ = , (AI.3)
(I+_) (i-2_) 2(i+_)

p is the material shear modulus; however for a thin disc

_E E

' (l-v2) 2(I+_)

From the dynamic equilibrium of a plane polar element it can be shown

[i p288] that the equations of motion are

_r 2p_ _Zu
' (Ale4)

(l+s_)l. _c + 2_ _r_ = p _t _'_ Zv

where p is the material density.

Ellmlnatln_,u and v using equatlons Alol and AI,4 leads to the

two uncoupled wave equatlons for d_l_cn_ and rotational motion.

V2¢ _ 8 t 2 C1 :

I (A1.5)

_/P

i C22 8 t 2
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where C1 and C2 are the _latatlcnnl and rotational wavespoeds mid 92

is the Laplacian operator in plane polar coordinates i.e.

2

_ r 2 r it r r 2 _ 0 2

The solution for the disc motion whici_ conforms to Che wave

equations ,/D._ must also satisfy the boundary conditions at the ri_

of the disc i.e,

Orr(alg,_ ) = Oo(g,t)j _rO(atOpt) = To(e,t ) (A1.6)

where o° _nd TO are the normal stress distributions and the shearing

stress distributions applied to the rim in the direction indicated

in Figure A1. It is assumed that no o_ stress l_ applied.
J

J

i_ A1°2 The Solution

If it _ as6umed that th8 t_ an_ _ _ _ _a_

(V 2 + k_) _- _ 0 kI = _/C 1

(A1.7)

(V2 +k_) "_ = 0 k2 = ,,i/c2

where the -- denotes the Fourier Transform, defined _

F -i_lt_- (_) = sCt)e dt (AI.8)

k 1 and k Z are the wave number_ associated with _he di!at_tonal wav_

and the ro_atlonnl wave_.
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It is now assumed that _ and _ are each the product of two

separable functions, one of r dependence and one of G dependence

lee.

¢ = W(r).Q(O) (A1.9)

Substitution of A1.9 into Equation A1.7 results in the governinE

equations for the 9 and r dependence:

d2Q + n2Q = 0 n=O.l_2p3...(Al.lO)
d8 2and

r 2 _2W + r _r + ((klr)2-n2) W = 0 (AI.II)
dr 2

Equation AI.IO is a second order dlfferential equation which has a

solutlon of the form

Q(@) = C cosn_Dsln n8 (AI.12)

where C and D are ¢onstantB. Equation AI.ll is Bossel's equation

of order n which have solutions

i. •I Wn(klr) = CnJn(klr) + DnYn(klr) (AI.13)

where Jn and Yn are Bessel functions of the first and second kind,

Cn and Dn are constants. Yn goes to infinity when klr÷O (at the

centre of the disc) therefore Dn=O for this problem.

The goners1 solution for the dilatatlon and the rotation is found

by substituting equation A1.13 and AI.12 into A1.9 and t_clng the

sum of the n solutions i.e.

= _= (Alnsinn_ + A2nCOS nO) Jn(klr)
n=O

(AL 14)

= _ (B nCOSnO - B2n slnne ) Jn(h2 r)n=O
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Aln _ A2nrB1n_B2n are constants which are determined by the force

distribution on the rim of the disc, Note that a coo nO or sin n9

variation arotmd the disc is associated with a Jn radial variation.

It ca_l be seen from equations Al.14 that the dilatation at any point

on the disc is entirely independent of the rotation. ]Iowevor the in

plan_ dlsplacements ujv, are a combination of dil_at_on and rotation

effects end can be found Ill by subs_ituting Al.14 into ALl (after

taking Fourier Transforms o_ AI. 1) and solving the resulting

simultaneous partial dlfferentlal equations to give:

_(r) = Z_ Uln(r) sin n8 + U2n(r) cos n8
n=O

AI. 15

_(r) = Z" Vln(r) cos n8 - V2n(r) sin nO
n=O

what@

i ' jn(k2r )

-r-1 Ujn(r) = Ajn k_ " Jn(kl r) + Bin. (k2r)22n .

_r-IVjn(r) n .Jn(klr)+Bjn ' 2 - . Jn(k2r )
• : = Ajn, (klr)2 (k2r)i

.I: J = ij2.

_le strosses at any point in th0 disc can be found by substituting

_qu.tlun_ Ai.15 and AI.14 into AI. '_ to obtain,

-_rr_(2U) = m [AlnNln(klr)+BlnN2n(k2r) ] sin n8 +
n=O

+[A2nN2n (klr)*B2nN2n(k2r) ] cos nG

O"r_._2 P_ Ii_ [AlnB1n(ll;lr)+BlnS2n(klr) ] COS n8

', .--o
b - [A2n_in(klr)+B2nS2n(klr)] sln n9
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(AI. 16)

FO@_L_ _ [^in TIn (klr) + BI.T2n(k2r)] sin n8 + cent
n=O

+ [A2nTln(klr) + B2nTgn (k2r)] cos nO

where
mr

Nln(klr ) = (A/2_) Jn(klr) - Jn (klr)

2n 2n__n__'J'n (k2r)

N2n(k2r) = (1_2r)2 'Jn(k2r) (k2r)

n n t

• Jn (klr)

Sln(klr) = (klr)2' 'Jn(kl r) - klr
(AI.17)

2n 2

k + _k2r "J'n (k2r)
S2n(k2r) = (1- (k2r)2/Jn(St)

n 2

Tln(klr) = (2_).Jn(klr) +

I T

(klr)2' Jn(klr)- k-_ Jn(hl r)

Tzn(k2r) = -N2n (k2r)

!
The constants Aln , A2n ,Bln _ and B2n are all that are now required

• i_ for a complete solution_ and these are found by equating the Fourier

i _ Transform of the boundary conditions (Equu_ion AI.8) to the

equations AI.16 namely

_o¢e,w)= ?'rr¢_,o,_),7o¢e,_) = 7re¢.,e,_)¢Ai.,s)

and multlplylng both sides of equations A1.16 by cos nO and sin n6

and integrating over a range 0 <6 <27, This procedure identifies

the indlvldanl constants as
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I

^2.= [2pDj-:.[-s2_¢k:_> : + N2"Ck_>¥ I
OC OS

. = 1,2°a .....

Ajo=_ l^jnln=o Sjo= ilBa.l=--oa= :,2

Dn = Nln (kla) S2n(k2a) - N2n(k2a ) Sln(kla)

where 1 Ii_Uo(@,_)--
_oc = _ cos nO d9

(A1,20)
2_

i I _ (e,_) sin ne d(_

:2', : =
'i: os o

0

_oc and "r'-osare slmilarly cle:_Inea.
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kl/k2 .706 .656 .612 .5_ ,503 ,403 0 Mode
v 0 .1 .2 .28 .33 ,4 .5

2.4__s _.56 _._9 2.7_ 2.66 ! _. 94 3.0...._ !_!
I

i 5.01 5.31 5.78 6.318 6.54____i i.I

I 6.74 6.75 6.80 6.99 i_d4]II 6 6 6..7_ 2_.._._
!

9.60 6.67 2.1

i 10.09 9.94 9.96 9.97 6.21 ,6.97 3._.I

11.28 12.56 10o03

13.15 13.15 13.17 13.20 ]3.13 13.14 13,17 4..____

14.28 15.14 1612 _ 13.82

_5.3_ 16.3_ 16.56 1_.3_ _.3, 16._ 15._ 5._
15.57 19.49 18.35 17.29

19.52 19.93j 19.50 19.52 19.49 19.51 19.51 6.1
I

TABLE 1: k2a as a function of Poissons ratio _or the

(m,ll_C_es of dll_:.Ctonal and rotation of a thick disc

(cylinder)

k 2 = 2_f /'2p(1._)E

g_/ 3-_,,

(m,1) _ rotatlonal mode

(mjl) = dllatatlonsl modo
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0.25 0.3 0.35 i 0.4 0.46 0.5

1.652 1.617 1.978 i 1.9346 1.483 1.429

3.538 3.5291 3.611 3.470 3.393 3.2764

4.168 4.0474 3.933 3.637 3.771 3,738

6.087 5.886 5.676 5.457 5.227 4.986

6.9117 6.911 6.910 6.905 6.837 6.666

! 8.0685 7.798 7.619 7.236 7.003 6.955

9.966_ 9.699 9.814 8.951 8.572 8.179

i,

i 10.1415 10.113 10.110 i0.110 10.097 9.749

11.948 11.844 11.126 i i0.692 10.2641 10.129

t

k 2 2_f _, N

k2

TABLE 2: (Holland 141, kla as a function of Poissons

ratio _ for tho (re,l) modes of dilatation and

rotation of a thin disc
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TABLE 3: k2a for the (m_O) rotational modes of vibration

of a thln or thick dlsc

Modo kZ a

1, 0 5.136

2,0 8.418

3,0 11.621

4,0 14. 795

5,0 17.96

E

!
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• imaginary

0 _ --_' /_ x

-I

FIGU_ 1: Complex Bessel function of the first kind of order 1,

Jl(x(l-. 0111)

I

L

real

20

I -I
FIGURE 2: Complex BeBSO1 Functlou of the first kind

of order 2, J2(x(l-.Oll))
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........ _otatlonal waves alone
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