何＂：
2

SOUTHAMPTON institute of sound and vibration research

Octobor 1082

tiE DXNAMIC IN PLANE RESPONSE AT THE CENTRE OF A ROTATING ELASTIC DIEC DUE TO OSCILLATORY IN PLANE FORCFS AT TEE RIM

ISVR Techntcal Roport 121
by
R.J. Pinnington

October 1982

The author gratefully acknowledges the support by the Ministry of Defence (Admiralty Marine Technology Esiablishement) of the unclassified contract under which this research was carried out.

CONTENTS

Lift of Symbols(111)
1.0 INTRODUCTION 1
2.0 TRANSFER INERTANCE BETHEEN THE RIM AND THE CENTRE 3
OF THE DISC
2.1 The theoretical form of the transfor inertances 3
2.2 Computational details 7
2. 3 Discunsion of the form of the transfer inertance $H(\omega)$ 8
2.4 Tho form of the transfer inertance $\bar{W}(\omega)$ 11
2.5 The form of the transfer inertance $\bar{T}(\omega)$ 13
3.0 THE EXCITATION FUNCTION 15
3.1 The excitation function of an oscillatory rotating force 15acting upon a rigid dige
3.2 The excitation functions for disc modes with n 17 circumforontial wavelengths.
4.0 THE ACCELERATION RESPONSE OF THE CENTRE OF THE DISC 23
4. 1 Special cases of the response at the contre of the disc 25
4.2 Reaponse at the centro of a rotating disc 28
5.0 CONCLUSIONS 30
5.1 The Transfor Function 30
5.2 The Excitation Function 31
5. 3 The Response at the centre of the disc 31
REFERENCES 33
APPENDIX Al: Formulation of the Problem, and the Solution 34
TABLES 41
FIGURES 44

NOMENCLATURE

m disc mass
$n \quad$ circumferential inode number
P, Q normal and shear force applied to the disc rim
r, θ plane polar co-ordinates
t time in secs
$\bar{T}(w) \quad$ trangfer inertance between a net moment applied to the rim angular acceleration of the centre of the disc
u, v diaplacements in the x and y directions
$\bar{u}, \vec{v} \quad$ Fourier transiorm of the displacementa in the x and y difections
$\bar{u}(r), \bar{v}(x)$ Fourier transform of the displacements in the x and y difections on the $\theta=0$ radius
$\bar{U}_{j n}, \bar{v}_{j n}$ Fourier transform of x and y displacements, for the $\mathrm{n}=1$, for $\theta=0, \mathrm{j}=1,2$.
$W(\omega)$ Transfer inertance between a tangontial forco on the rim to the acceleration in the same diraction at the sentre of the disc.

1.0 INTRODUCTION

The moving parts of a rotating machine, are usually an assemblage of discs, as in a gearbox, or a simple thick disc or cylinder, as in an electric machine. The rotating disc element is acted upon by in plane forces at the rim, which are responsible for vibration at the shaft at the centre of the disc. These vibrations are then transmatted through the bearings to the machine casing, where thoy will cause unwanted sound radiation or vibration transmission to further connected structures.

The objective of this report is to consider the first part of the problem, namely to analyse the vibration response at the centre of a rotating disc which is subjected to in-plane, normal and tangential forces at the rim.

Such a disc will, of course, behave as a rigid body at low erequencies, with the acceleration at the centre in phase with force at the rim. However, to snalyse the response at higher frequencien it is necessary to consider wave motion within the disc.

The inplane vibration of an elastic solid media arises from independent contributions of two types of wave motion, namely dilatational waves (which are equivalent to acoustic pressure waves in a liquid), and rotational (or shear) waves $[1,2]$. The vibration analysis of the disc therefore involves two uncoupled wave equations (associated with each wave type), expressed in plane polar co-ordinates. The general solution to each of these equations is a summation of orthogonal modes. Each mode has a Begeel function variation of ordar n in the radial direction and a $\sin n \theta$ or $\cos n \theta$ variation with the circumferential direction (where n is an integer between 0 and ∞).

Several authors have worked in this fleld previously. In general they analyse a stationary disc subjected to a rotating forcing point, as opposed to a rotating disc and a stationary forcing point. This simplifies the problem by ignoring Coriolis forces. The same approach is adopted here.

Abstract

Eringen $|3|$ providas general expressiong for the vibration of a thick disc or cylinder subject to dynamic forces. His approach ts largely followed in this report and his results applied to the specific problem of a point oscillating force applied to the disc, with normal and shear components. In references $|4,5,6|$ thin discs or thin annular rings are analysed and resonance frequencies computed. The dilatational waves in a thin disc travel more slowly than in a thick disc as there is less lateral constraint, therefore the resonance Prequencies associated with dilational wave motions differ slightly from those of a thick disc. The rotational waves are the same for a thin or thick disc.

In this report the analysis applies equally to a thin or thick disc, but resonance frequencies and transfer functions are only computed for the thick disc case.

The approach adopted in this roport was first to calculate the transfor functions betwoen normal, or tangential, forces at the disc rim and the inplane acceleration at the centre of the disc. Next the Fourier Transform of the excitation due to an oscillatory rotating point force was calculated; and finally the excitation and the trangfer functions were combined to prodict the responge.

The greatest gimplfications that arose from the transfer function calculations was that only modes with a cose or gine circumferontial variation actualiy contribute to the inplane acceleration of the centre of the disc, It was also found that a normal force acting in the disc rim predominantly exciting dilatational wave motion, while a tangential force mainly excites rotational wave motion.

2.0 TRANBFER INERTANCE BETWEEN THE RIM AND THE CENTME OF THE DISC

A complote analyais of the vibration of a disc subject to inplane boundary forces is presented in Appendix Al (which is largely a modified veraion of reference 3). The resulta from that Section were applied to obtain an expression, for transfer inertance to the centre of the disc (mertance acceleration/force). Using a digital computer these expressions were applied to give numerical data which are displayed graphically.

The analysis assumes a thick disc, for which the diatatianal wave speed is greater than for a thin disc (because of Poisson's ratio effects). However, the theoretical form of the results is similar for both the thin or thick disc, the only difference being the value of the dilational wave number.

2.1 The Theorottcal Form of the Transfer Inertances

Tho ilgure below gives the sign convention for the analysis:

u and v are the diaplacements in the x and y directions. σ_{j} and τ_{0} are the surface atresses applied to the rim i.o, they act in the direction of the applied forces.

The displacements at any point on tha x axis $\vec{u}(r), \vec{v}(r)$ (in the x and y directions) aro found by gatting θ to zero in oquation A1-15, giving

$$
\begin{align*}
& \bar{u}(x)=\sum_{n=0}^{\infty} \bar{U}_{2 n}(x) \tag{2.1}\\
& \bar{v}(r)=\sum_{n=0}^{\infty} \bar{X}_{n}(r)
\end{align*}
$$

from which it can be seen that the displacement at any radius r, is the sumation $o f$ modal contributions. \vec{v} and \bar{u} are the Fourier Transforms of the time dependent displacements $v(t)$ defined as

$$
\begin{equation*}
\bar{v}=\int_{-\infty}^{\infty} v(t) 0^{-i \omega t} d t \tag{2.2}
\end{equation*}
$$

whore ω is the angular frequency and t the time.

The functions $\bar{U}_{2 n}(r)$ and $\bar{Y}_{i n}(r)$ are the displacements made in the x and y directions at $\theta=0$, for the $n^{\text {th }}$ mode. These can be seen in equation A1.5 to be related to Beasel Functions of order $n,\left(y_{n}\right)$.

The displacements in the x and y directions at the centre of the disc aro simply found by substituting $r=0$ in equation 2.1 (coefficients in Equation A1.16) giving

$$
\begin{array}{ll}
\bar{v}(0)=-\frac{A_{11}}{2 k_{1}}-\frac{B_{11}}{k_{2}} & r=0 \\
\bar{v}(0)=-\frac{A_{21}}{2 k_{1}}-\frac{B_{21}}{k_{2}} &
\end{array}
$$

where k_{1} and k_{2} are the dilational and rotational wavo numbers roapectively; and A_{11}, A_{21} are the amplitudes of the dilational ami mode and B_{11}, B_{21} are the amplitudes of the rotational nel mode, (Equation A1.14).

Only the $n=1$ dilational and rotational modes (which have $a \cos \theta$ or sin θ circumferential variation and a $J_{1}(k r)$ radial variation) contribute to the displacoment at the centre of the diac. This is because the displacement $1 s$ proportional to the gradient of the dilat ational mode shape and rotational mode shape, and only the n=1 Bessel function (J_{1}) has a slope at $r=0$. This is illustrated in the figures below.

n=1 mode

The mode shape for (2,1)
dilatational or rotational
mode; 2 modal circles
(including central point),
1 modal diameter

The approx. corresponding displacement
mode ghape adopts $z(1,0)$ pattern with a finite value at the centro.

The displacements $\bar{u}(0)$ and $\vec{v}(0)$ at the centre of the disc can be written in terms of the applied forces at the rin by substituting for A_{11}, A_{21}, B_{11}, and B_{21} in equation $2.3 w i t h$ the $n=1$ values of equaton A1.19, giving

$$
\begin{align*}
& -\omega)^{2} \bar{v}(0)=\bar{H}(\omega) \cdot a \pi \bar{\sigma}_{O B}+\bar{W}(\omega) \cdot a \pi \bar{\tau}_{O C} \tag{2.4}\\
& -\omega \bar{u}(O)=\bar{H}(\omega) \cdot a \pi \bar{\sigma}_{O C}-\bar{W}(\omega) \cdot a \pi \bar{\tau}_{O B}
\end{align*}
$$

$$
\text { where } \begin{aligned}
& \bar{H}(\omega)=\frac{\omega^{2}}{2 \mu D} \cdot\left[\frac{s_{21}\left(k_{2} a\right)}{2 k_{1}}-\frac{s_{11}\left(k_{1} a\right)}{k_{2}}\right] \\
& \bar{W}(\omega)=\frac{\omega_{1}^{2}}{2 \mu \mathrm{D}} \cdot\left[\frac{-N_{21}\left(k_{2} a\right)}{2 k_{1}}+\frac{N_{11}\left(k_{1} a\right)}{k_{2}}\right] \\
& D=N_{11}\left(k_{1} a\right) \cdot s_{21}\left(k_{2} a\right)-N_{21}\left(k_{2} a\right) \cdot s_{11}\left(k_{1} a\right)
\end{aligned}
$$

$\bar{a}_{\infty}, \bar{\sigma}_{o s}$ are related to the normal forces applied in the x and y directions and $\bar{\tau}_{o c}$ and $\bar{\tau}_{o s}$ are related to the tangential forces applied in the y and x directions. These terms are defined in Equation Al-20 and discussed in Section 3.

On substituting for N_{11}, N_{21}, S_{11} and S_{21} from equation A1.17, the transfer inertances from the rim to the centro of the disc becomes, after some rearrangement,

$$
\begin{align*}
& \bar{H}(\omega)=\frac{2}{m} \cdot \frac{k_{2} a \cdot J_{2}^{\prime}\left(k_{2}^{a}\right)-2 J_{2}\left(k_{1} a\right)}{\frac{2}{k_{1} a} \cdot J_{1}\left(k_{1} a\right) \cdot k_{2} a J_{2}^{\prime}\left(k_{2} a\right)-\frac{2 J_{1}}{k_{2} a}\left(k_{2} a\right) \cdot 2 J_{2}\left(k_{1} a\right)} \tag{2,6}\\
& \bar{W}(\omega)=\frac{2}{m}, \frac{-2 J_{2}\left(k_{2} a\right)+k_{1} a\left(k_{2} / k_{1}\right)^{2} J_{1}\left(k_{1} a\right)-2 J_{2}\left(k_{1} a\right)}{\frac{2}{k_{1} a} \cdot J_{1}\left(k_{1} a\right) \cdot k_{2} a J_{2}^{\prime}\left(k_{2} a\right)-\frac{2 J_{1}\left(k_{2}^{a}\right)}{k_{2} a} \cdot 2 J_{2}\left(k_{1} a\right)} \tag{2.7}
\end{align*}
$$

where $\left(\frac{k_{2}}{k_{1}}\right)^{2}=\frac{\lambda+2 \mu}{\mu} \quad$ and $m=\rho \pi a^{2}$
$\bar{H}(\omega)$ and $\bar{W}(\omega)$ are the transfor inertances between a point force on the rim and the acceleration response in the same direction at the centre of the disc, as defined in the figure below

$\bar{H}(\omega)=-\left.\left.\frac{\omega^{2} \bar{u}(0)}{\bar{P}}\right|_{\bar{Q}=0} \quad \frac{\bar{v}(0)}{\bar{P}}\right|_{=0} \begin{aligned} & \bar{Q}=0\end{aligned}$
$\bar{W}(\omega)=-\left.\frac{\omega^{2} \widetilde{\mathrm{~V}}(0)}{\bar{Q}}\right|_{\overline{\mathrm{P}}=0}$
$\frac{\bar{u}(0)}{\bar{Q}} \left\lvert\,=\begin{aligned} & =0 \\ & \bar{p}=0\end{aligned}\right.$
\tilde{p}_{1}, \bar{Q} are the Fourier Transforms of the applied forces to the rim

2.2 Computational Details

The transfer inertances $\bar{H}(\omega), \bar{W}(\omega)$ and $\bar{T}(\omega)$ in equations 2.6, 2.7 and 2.8 were plotted out using a digitni computer.

These functions are complex functions, with an imaginary component associated with the material damping.

The effect of the material damping was included by assuming that a complex modulus of elasticity $\overline{\mathrm{E}}=\mathrm{E}(1+i \eta)$, where $r_{\text {, }}$ is the hygteretic loss factor. This complex modulus of elasticity is responsible for n complex wavenumber, \vec{k}_{2} calculated thus (using Al,3)

$$
\bar{k}_{2}=k_{2}\left(1 \cdots \frac{i n}{2}\right) \simeq \omega \sqrt{\frac{2 \rho(1+v)}{E(1+1 \eta)}}
$$

likewise

$$
\bar{k}_{1}=k_{1}\left(1 \cdots \frac{i n}{2}\right)
$$

```
These values for complex wavenumbers wero uged as the argument
of the Bessel Functions J J (\overline{ka), J}
transfer inertances. The complex Bessel functions J J and J J
are shown in Figures 1 & 2.
The oxpressions used for the Besgel Functions in the computation are
high and low frequency assymptopic solutions (see for example |8|).
The transfer functions were calculated for values 0<k a<20 or
O<k}\mp@subsup{2}{}{a}<100. \mp@subsup{k}{2}{}a\mp@code{taken as the independent variable. 2048 data points
were used to cover these frequency ranges.
The transfer functions were calculated for a range of k, k
ratios, including those for aluminium and steel.
```


2.3 Discussion of the Form of the Transfer Inertance H (w)

The normal force transfer inertance, equation 2.6, is n function of several variables; the mass of the disc m, the rotational wavenumer k_{2}, the Poissons Ratio v and the material loss factor, η. The significance of each of these variahles ts discussed in the following sections.
(i) The mase of the Disc
$H(w)$ normalised to the disc mass, is plotted for various Poisson's Ratio values in Figures 3-8. It can be seen that at low frequencies when $k_{2} \leqslant 1$ the inertance taks the value of a rigdd mass, For steel With a dilatational wave speed of $5700 \mathrm{~m} / \mathrm{s}, \mathrm{k}_{1} / \mathrm{k}_{2}=.55$, a 2 m diameter disc would behave as a rigid mass below 504 Hz .
(ii) The Palssons Ratio of the Material

Figures 3-6 show the trangfer inertance for four different values of Poisson's ratio v. The Poissons ratio ig related to the ratio between the dilateral wavenumber $\left(k_{1}\right)$ and rotational wavenumber k_{2}, for a thick dise by

$$
\begin{equation*}
k_{1} / k_{2}=\sqrt{\frac{1-2 v}{2-2 v}} \tag{2.10}
\end{equation*}
$$

If the disc is thin the rotational wavenumber is unaffected but the dilatational wavenumber becomes that of a thin plate, longitudinal wave k_{p} and

$$
\begin{equation*}
\frac{k_{p}}{k_{2}}=\sqrt{\frac{1-v}{2}} \tag{2.11}
\end{equation*}
$$

All the results in this analysis apply to thick discs but the thin disc results could be found using the ratio 2.11 in Equations 2.6 and 2.7.

Figure 3 displays the $\bar{H}(\omega)$, when only dilational waves are present In the disc, as would occur for a material so soft in shear as to be liquid. The dilatational waves correspond to acoustic presgure waves.

This function is obtained by setting $k_{1} / k_{2} \rightarrow 0$ in equation 2.6 , giving

$$
\begin{equation*}
H(u)=\frac{1}{m} \cdot \frac{1}{\left.2 / k_{1} a\right) \cdot J_{1}\left(k_{1} a\right\rangle} \tag{2.12}
\end{equation*}
$$

The resonances occur when $J_{1}\left(k_{1}, a\right)=0$.

In Figure 3 the transfer inertance is displayod on a scale such that $k_{1} / k_{2}=.55$ (the ratio for steel) which means that this graph displays the contribution to the transfer instance of a stecl disc from the dilatational waves alone.

In Figures $4,5,6$ the transfer inertance is plotted for Poisson's natios of 0 , .28 and .33 respectively. A Poisson's ratio of .28 corresponds to gtesl and . 33 to aluminium. Figure 5 shows $\bar{H}(w)$ for a gteel disc (which has both dilatatimat and rotational wave transmisaion) obtained from equation 2.6 using $k_{1} / k_{2}=.55$.

This plot is compared with the previously discussed case of dilatational wave transmisaion alone (figure 3). It can be seen that the dlatational motion is responsible for the low frequency rigid body motion ($k_{2} a \leqslant 1$), and nlso for the overall trend.

However, indispersed between the dilataticnal wave resonancos (denoted d) there is a train of approximately equally spaced resonances associated with rotational wave motion (denoted R). The stecl ta more mobile in rotational motion than dilatational motion ($k_{1} / k_{2}=.55$) which is reflected by the fact that there are almost two rotational resonances to each dilatational resonance. Indeed the first significant resonance of the disc is mainly due to rotational motion and occurs when $k_{1} a=1.54$ or $k_{2} a=2.79$. For a 2 m steel disc of dilational wave speed $5700 \mathrm{~m} / \mathrm{s}$ this would correspond to a frequency of 1393 Hz .

In Section 2.1 it is shown that the rotational resonances occur when $J_{2}^{\prime}\left(k_{2} a\right)=0$, which for $k_{2}{ }^{a}>1$, is approximately when $J_{1}\left(k_{2}{ }^{u}\right)=0$. The total transfer function $\overline{\mathrm{H}}(\omega)$ can therefore be regarded as the superposition of two sets of resonant rosponses, one associrited with diatational motion, the other associated with rotational motion.

Figures 4 and 6 show $\bar{H}(\omega)$ for two different Poisson's ratios $v=0$ and $v=.33$ respectively. It can be seen the k_{2} a value associated with rotational motion resonances are almost independent at Poisson's Ratio, as is clearly illustrated in Table 1 and Figure 7. This is of course because the values are plotted as a function of $k_{2}{ }^{a}$. The actual rotational wave resonance frequencies decrease with Poisson's ratio according to equation Al.5.

$$
\begin{equation*}
f=\frac{C_{n}}{2 \pi}\left(k_{2} \mathrm{a}\right) \tag{2.13}
\end{equation*}
$$

$$
\text { where } c_{2}=\sqrt{\frac{E}{2 \rho(1+v)}}
$$

k_{2} is constant

However, it is seen in Figures 4,6 and 7 that the dilational wave resonanco Irequencies increase relative to those associated With rotational motion, with increasing Poissons Ratio.

The resonance frequencles are given in Table 1 for various Poissons Ratios, although it must be stressed again that these refere to thick diecs. For thin discs the resonance frequencies are tabulated in Table 2 , which are taken from $|4|$.

The precise dilational or rotational mode ahapes corresponding with resonance Prequency in Table 1 have not been calculated, but the number of nodal circules (m) and nodal diameters (n) is indicated in Fighre 7. All modes which contribute to the displacement of the centre have only one nodal diameter in the dilational or rotational mode shape as discussed in Section 2.1.

Figure 9 shows $\bar{H}(\omega)$ for a stcel disc $(v=.33)$, loss factor . 02, plotted for $0<k_{2^{a}}<100$, from which it can be geen that the damping boavily attonuates the contribution from the rotational waves leaving only the effect of the dilataticnal waves. Resonance frequencies occuring when $J_{1}\left(k_{1} s\right)=0$. Note that the modes are evenly excited, the centre of the disc always being an antinode for these modes.

2.4.The form of the transfer inertance $\bar{W}(\mu)$

$\bar{W}(u)$ the transfer inortance between a point tangential force at the rim of the disc and tho acceleration response in tho fame directior at the centre of the disc is given in Equation 2.7. This equation is a function of the disc mass, the Poissons Ratio and the damping, is dincussed in the following paragraphs.
(1) Tho Disc Masa
$\bar{W}(\omega)$ and $\overline{\mathcal{H}}(\omega)$ are plotted together in Figure 15, a comparison roveals that at low frequencies where $k_{2}{ }^{a} \leqslant l$ they both take the same value of $\frac{1}{m}$, the inertance of a rigid masa,
(ii) The Effect of Poissons Ratio

The resonance frequencies of the $\bar{W}(w)$ function and the corresponding mode shapes are of course the same as those discussed previously for the $\overline{\mathrm{I}}(\omega)$ function (Table 1, Figure 7). However, the degreo of excitation of various modes $i s$ very different for the two functions. The $\bar{W}(w)$ function is dominatod by the rotational wave motion, wheraas the $H(\omega)$ function is dominated by the dilatational wave motion.

The dominance of the rotational wavo motion over the dilatational wave motion $1 s$ clearly seen in Figures 10-14. Figure 10 displays $\bar{W}(u)$ when the material is very soft in shear. For the computation it was chosen that

$$
\mathrm{k}_{1} / \mathrm{k}_{2}=0.01
$$

which is equivalent to $v \rightarrow$. 5 For this case the rotational wave resonances displayed occur at much lower frequencies than the resonances associated with dilatational wave behaviour. Figure \mathbf{j} is therefore the transfor inertance $\bar{W}(\omega)$ with no dulatational wave contribution.

However, inspection of Figures 11-14 reveals that for all valyes of Poissons Ratio $\overline{\mathcal{W}}(\omega)$ is always dominated by the rotational wave motion, with behaviour closely resembling that of Figure 10.

A suitable approximation with which to describe the rotational wave motion contribution to $\bar{W}(w)$ is obtained by setting $k_{1} / k_{2}=0$. Under this condition Equation 2.7 becomes

$$
\begin{equation*}
\bar{W}(\omega)=\frac{1}{m} \cdot \frac{2 J_{2}\left(k_{2} a\right)-\left(k_{2} a\right)^{2} / 2}{k_{2} a\left(J_{2}^{\prime}\left(k_{2} a\right)\right)} \tag{2.14}
\end{equation*}
$$

where

$$
J_{2}^{\prime}\left(k_{2} a\right)=J_{1}\left(k_{2} a\right)-\frac{2}{k_{2} a} J_{2}\left(k_{2} a\right)
$$

This function $1 s$ displayed in Figure 10. The rotational wave resanances occur when $J_{2}^{\prime}\left(k_{2} a\right)=0$. A further approximation can be made if $k_{2} a \gg 1$, then $\bar{W}(u)$ becomes

$$
\begin{equation*}
\bar{W}(\omega) \approx \frac{1}{m} \cdot \frac{}{\frac{2}{k_{2}^{a}} J_{1}\left(k_{2} a\right)} \tag{2.15}
\end{equation*}
$$

The equation is 日imilar to the approximation for $\tilde{H}(\omega)$ in Equation 2.12.

Figure 15 compares $\bar{H}(\omega)$ and $\bar{W}(\omega)$ for a steel disc with a loss factor of 0.02. The two functions assume their gimplified forms (Equations 2,22 and 2,15) for $k_{2} a>20$. It can be seen also that $\bar{W}(\omega)$ has almost twice as many resonances as $\bar{H}(\omega)$ and is usually at least twice as large as $\vec{H}(\omega)$. This reflects the fact that the vibration at the centre of a disc is usually at least twice as sensitivo to tangential forces applied to the rim as compared to. normal forces applied to the rim.

2.5 The form of the transfer inertance T(4)

The rotation $\bar{\psi}$ at the centre of the disc can be deduced by setting $r=0$ in Equation A1.24. Only the $n=0$ modes have any contribution at raO, as all Beasel Functions of the first kind, apart from J_{0}, are zero at the origin. The rotation of tha centre therefoie becomes

$$
\begin{equation*}
\bar{\psi}=B_{10} \tag{2.16}
\end{equation*}
$$

which on substitution for B_{10} from equation $A 1,9$ gives

$$
\begin{equation*}
\bar{\psi}=\frac{1}{4 u} \cdot \bar{S}_{20} \bar{\tau}_{0 c} \tag{2,17}
\end{equation*}
$$

where $T_{o c}$ is proportional to the tangential force applied to the
 and performing some manipulation.

$$
\begin{aligned}
-\omega^{2} \bar{\psi} & =\bar{T}(a 1) \cdot \bar{\tau} a^{2} \pi \\
\bar{T}(\omega) & =\frac{1}{I}=\frac{1}{\left(\frac{8}{\left.\bar{k}_{2} a\right)^{2}} \cdot J_{2}\left(k_{2} a\right)\right.}
\end{aligned}
$$

whem $I=m^{2} / 2$, the moment of inertia area of the disc about the centre. $\bar{T}(\omega)$ is the transfer inertance between a unit roment applited to the disc rim, and the angular acceleration at the centre. At low frequencies $\bar{T}(\omega)=\frac{1}{\mathrm{I}}$ as seen in Figure 16. The resonances of the $n=0$ modes occur when $J_{2}\left(k_{2} a\right)=0$, and therefore occur at different irequencies from the resonances in the $\vec{H}(\omega), \vec{W}(\omega)$ transfer inertances.

These resonant frequencies are the same for a thin or a thick disc as there is no dlatational wave dependence.

In Figure 17 the transfer function $\vec{T}(w)$ is plotted $0<k_{2}{ }^{n}<100$, the high frequency value becomes large compared to $\bar{H}(\omega)$ or $W(\omega)$ as it has a $\left(k_{2}\right)^{2}$ dependence (Equation 2.18) as compared to a $k_{2} a$ dependence (Equation 2.6, 2.7).

3.0 THE EXCITATION FUNCTION

Section 2.1 was a derivation of the response of the centro of the disc in terms of: the point transfer functions $\bar{H}(\omega), \bar{W}(\omega)$ and $\bar{T}(w)$ (between the centre and point forces on the disc rim), and the froquency dependent stress distributions $\bar{\sigma}_{O C}(\omega), \bar{\sigma}_{O B}(\omega)$ $\vec{T}_{o d}(\omega)$ and $\bar{T}_{o s}(\omega)$ acting over the disc rim. Tho form of $\bar{H}(\omega), \bar{W}(\omega)$ and $\bar{T}(\omega)$ was discussed in Sections $2.2-2.4$ and it now remains to consider the form of the stress distributions $\bar{\sigma}_{O C}, \bar{\sigma}_{O B}, \bar{\tau}_{O C}, \bar{\tau}_{O B}$ in this section.

The analysis concentrates on the specific cas of a point force oscillating at α rads/sec which rotates the disc at Ω rads/sec. However, the same procedures could be applied to more general stress distribution.

The stross functions $\bar{\sigma}_{O C}, \bar{\sigma}_{O B}, \bar{\tau}_{O C}$ and $\bar{\tau}_{O B}$ wens found to be dependent upon the number of wavelengths ' n ' in the circumferential disc mode shape, thorafore as an introduction the simplest onse of an oscillatory rotating forco acting upon a rigid dige is considered first (as the motion is in phase over the whole body).
3.1 The Excitation Function of an Oscillatory Rotating Force acting upon a rigid disc

Tho force P cosat rotates the disc at Ω rads/sec. Resolving the force into x and y coordinates gives

$$
\begin{align*}
& F_{x}=p \cos \alpha t \cdot \cos \Omega t \tag{3.1}\\
& F_{y}=p \cos \alpha t \cdot s t n \Omega t
\end{align*}
$$

These two forces can be combinod uging a vectorial notation by denoting a unit vector in the y direction as i, whera $i=e^{\frac{1 \pi}{4}}, i, e$.

$$
\begin{equation*}
\bar{F}(t)=F_{x}+i F_{y}=P \cos \alpha t \cdot e^{1 \Omega t} \tag{3,2}
\end{equation*}
$$

Equation 3.2 is therefore a complete description of the magnitude and direction of the force at any time, the 1 term 1 not merely a mathematical device but has a physical meaning.

A Fourier Transform operation performed upon Equation 3.2, is defined

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{\infty} \bar{F}(t) e^{-i \omega t} d t \tag{3,3}
\end{equation*}
$$

$-1 \omega t$
where 0 can be regarded as a vector rotating in a clockwise direction. On substitution of equation 3.2 into equation 3.3 and performing the intogral by moans of the identity

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-i \omega t} d t=2 \pi \delta(\omega) \tag{3.4}
\end{equation*}
$$

the Fourier Traneform of the excitation becomes

$$
\begin{equation*}
\bar{F}(\omega)=p_{\pi}|\delta(\omega-(\alpha+\Omega))+\delta(\omega+(\alpha-\Omega))| \tag{3.5}
\end{equation*}
$$

which is purely real, hinting at its physical interpretation. Equation 3.5 dispiayed in graphical form is shown below

The Fourier Transform reveals that the excitation function in Equation 3.2 can be regarded as the superposition of two forces of conatant magnitude, one spinning anti-clockwise (w positive)

With frequency $\alpha+\Omega$ rads/sec and the other spining clockwise (w negative) with frequency $\alpha-\Omega$ rada/sec.

Therefore this particular application of Fourder Transforms provides
a physical interpretation to negative frequency.

The acceleration response of the disc is simply found by multiplying $\overline{\mathrm{F}}(\omega)$ by the mass inertance $\frac{1}{\mathrm{~m}}$.

$$
\begin{equation*}
\vec{n}(\omega)=\frac{1}{m} \cdot \vec{F}(\omega) \tag{3,6}
\end{equation*}
$$

时performing the inverge Fourier Transforms, given as

$$
\bar{a}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} a(\omega) \cdot e^{i \omega t} d t .
$$

the acceleration in the tim domain simply becomes

$$
\begin{equation*}
\bar{n}(t)=\frac{p}{m} \cdot \cos \alpha t \cdot e^{1 \Omega t} \tag{3.7}
\end{equation*}
$$

as might be expected.

It must be noted that this approach is only possible when the disc is symmetrical and the transfer function $\frac{1}{m}$ is identical in the x and y directions, and the motions in the two directions aro uncoupled.

3.2 The Excitation Functions for the disc modes with n circumforentinl wavelengths

In Section 3.1 only rigid body motion was considered, however it is the intention here to find the excitation level of disc modos which have n wavelengths around the circumference. For
this analysis it is not sufficient to define the net force acting on the disc (1.e. P in Section 3,1) but the streas diatribution over the surface must be atated.

A general normal stress distribution $f(\theta)$ rotating the disc at Ω rads/sec and vaxying in magnitude at a rads/sec could be written as

$$
\sigma_{0}\left(\theta_{i} t\right)=f(\theta-\Omega t) \cdot \cos \alpha t
$$

$$
0<\theta-n t<2 \pi
$$

However only a point force shall be considered here, ajthough the same analysis could equally be applied to other stregs distributions. Having said this, it will become clear later that if only the vibration of the contre of the disc is sought then only the not force is required, rather than the precise stress distribution.

Only normal forces will be considered in this unalysis, but the derived expressions will be equally applicable to the shear forces.

For a point force p cosot acting normal to the disc rim, and rotating at Ω rads/aec, the stress distribution around the disc rim an be represented by

$$
\begin{equation*}
\sigma_{0}(\theta, t)=\frac{p}{a} \cdot \cos \alpha t \cdot \delta(\theta-1 i t) \tag{3.8}
\end{equation*}
$$

where $\delta\left(\theta-\delta(t)\right.$ is repeated at 2π intervals of ($\left.\theta-f_{t}\right)$. The periodically applied $\delta(\theta-\Omega t)$ function can be represented by a Fourier sories, thus

$$
\begin{equation*}
\delta(\theta-\Omega t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \operatorname{cosn}(\theta-\Omega t)+\sum_{n=1}^{\infty} b_{n} \operatorname{sinn}(\theta-\Omega t) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta(\theta-\Omega t) d(\theta-\Omega i t)=\frac{1}{2 \pi} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(\theta-\Omega t) \operatorname{cosn}(\theta-\Omega t) \cdot d(\theta-\Omega t)=\frac{1}{\pi} \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(\theta-\Omega t) \operatorname{sinn}(\theta-\Omega(t) \cdot d(\theta-\Omega t) \cdot=0
\end{aligned}
$$

or

$$
\begin{equation*}
\delta(\theta-\Omega t)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty} \cos n\left(\theta-\Omega_{t}\right) \tag{3.10}
\end{equation*}
$$

Therefore the appliod atress can be written as the product of cosine functions

$$
\begin{equation*}
\sigma_{0}(\theta, t)=\frac{p}{a \pi} \cdot \cos \alpha t\left(\frac{1}{2}+\sum_{n=1}^{\infty} \operatorname{cosn}\left(\theta-\Omega_{t}\right)\right. \tag{5.11}
\end{equation*}
$$

which using the cosine addition rule becomes

$$
\begin{equation*}
\sigma_{0}(\theta, t)=\frac{p}{2 a \pi}\left[\cos \alpha t+\frac{1}{n} \sum_{n=1}^{m} \cos ((\alpha+n \Omega) t-n \theta)+\cos ((\alpha-n \Omega)+\operatorname{n} \theta)\right] \tag{3.12}
\end{equation*}
$$

By inspoction of the argument of the cosine terms it can be seen that for each mode number n, two cos ne circumforential stress distributions occur simultaneously; one rotates anti-clockwise at a/n+ $\sqrt{2}$ rads/sec, and the other rotates clockwise at $\alpha / n-\Omega$ rads/sec. For $n=0$ the disc is subjected to a uniform prossure over the whole surface.

Equation 3.12 can be converted into the frequency domain by taking the Fourior Transforms defined in Equation 3.3, which (using identity 3.4) Gives

$$
\begin{align*}
\bar{\sigma}_{0}(\theta, \omega)= & \frac{p}{2 a}\{\alpha(\omega-\alpha)+\delta(\omega+\alpha) \\
& +\sum_{n=1}^{\infty} e^{i n \theta}[\delta(\omega-\alpha+n \Omega)+\delta((v+\alpha+n \Omega)] \\
& \left.+\sum_{n=1}^{\infty} e^{-i n \theta}[\delta(\omega+\alpha-n \Omega)+\delta(\omega-a-n \Omega)]\right\} \tag{3.13}
\end{align*}
$$

This function is the boundary stross applied in the first of equations A1. 16 and Equation Al-18, and it was shown that the particular strese functions $\vec{\sigma}_{o c}$ and $\bar{\sigma}_{o c}$ acting in the x and y diructions can'be found by applying equations Al.20, thus

$$
\begin{align*}
& \sigma_{O C}=\frac{1}{\pi} \int_{0}^{2 \pi} \bar{\sigma}_{0}(\theta, \omega) \cos n \theta d \theta \\
& \sigma_{O B}=\frac{1}{\pi} \int_{0}^{2 \pi} \bar{\sigma}_{0}(\theta, \omega) \sin n \theta d \theta \tag{3.14}
\end{align*}
$$

A neater representation, is to use the i vector to indicate that the stress $\bar{\sigma}_{O B}$ is in the vertical direction, and thus the stress functions can be combined vectorally as

$$
\begin{equation*}
\sigma_{0 c}+1 \sigma_{o s}=\frac{1}{\pi} \int_{0}^{2 \pi} \bar{\sigma}_{0}(\theta, \omega) e^{\ln \theta} d \theta \tag{3.15}
\end{equation*}
$$

By substituting for $\bar{\sigma}_{0}(\theta, \omega)$ (Equation 3.13) into 3.15 and performing the integration using equation 3.4 , the stress function $\sigma_{D C}+1 \sigma_{D B}$ for the mode with n circumfarential wavelengths becomes

$$
\begin{equation*}
\sigma_{O c}+i \sigma_{O S}=\frac{P}{n}[\delta(\omega+a-n \Omega)+\delta(\omega-a-n \Omega)] \tag{3.16}
\end{equation*}
$$

$$
n=0 \rightarrow \infty
$$

The interpretation of this is seen in the figure belnw

(1) It can be seen that each modes is excited equally by the strese of magnitude $\frac{P}{a}$.
(ii) At each excitation frequency α, and excitation rotation speed Ω and for each modenumber n, the disc is excited simultaneously by two stress distributions each with a spacinl dependence of cos ne. One stress distribution rotates anticlockwise at $\alpha / n+\Omega$ rads $/ \mathrm{sec}$ and the other rotaten clockwise at $\alpha / n-\Omega$ rads/aec, as shown below.

These two rotating modes are associated with, in a stationary plane of roforence, two frequencies; $\alpha+n \Omega$ and $a-n \Omega$ respectively.
(iji) When \cap is zero the two stress distributions associated wih the $n^{\text {th }}$ mode rotates in opposite directions at the same frequency. Tha superposition of these two distribution results in a stationary or standing wave form, as is normally associated with vibration $0 f$ atatic atructures.
(Iv) If the excitation frequency α is zero, i.e. a constant rotating force is applied, then the $n^{\text {th }}$ mode is excited only in a anticlockwise direction at a speed of $n \Omega$ rads/sec with an associated frequency of $n \Omega$ rads/sec.
(v) For the analygis of the vibration at the centre of the disc oniy the $n=1$ mode contributes. The excitation function is

$$
\begin{equation*}
\sigma_{0}(\omega)=\sigma_{o c}+i \sigma_{o B}=\frac{p}{a}[\delta(\omega+\alpha-\Omega)+\delta(\omega-\alpha-\Omega)] \tag{3.17}
\end{equation*}
$$

normal force loading. Likewise the shear force excitation is

$$
\begin{equation*}
\tau_{O}(\omega)=\tau_{O C}+1 \tau_{O B}=\frac{Q}{a}[\delta(\omega+\alpha-\Omega)+\delta(\omega-\alpha-\Omega)] \tag{3,18}
\end{equation*}
$$

where Q is the shear force applied at the same point as P.

The vibration at the centro of the disc ds derived from the net force applied to the $n=1$ mode, which is the net force applied to the disc, as can be seen from Equation 3.14. Therefore the torm P and Q in equations 3,17 and 3,18 refer generally to the net normal and shear force applied to the disc, irrespective of the load distribution.

4.0 THE ACCELERATION RESPONSE AT THE CENTRE OF THE DISC

In Equation 2.4 the Fourier Transform of the acceleration at the centre of the disc in the x and y directions is written as

$$
\begin{align*}
& a_{y}=-\omega^{2} \bar{v}=\bar{H}(\omega) \cdot a \pi \cdot \bar{\sigma}_{O B}+\bar{W}(\omega) \cdot a \pi \cdot \bar{\zeta}_{O C} \tag{4.1}\\
& a_{x}=-\omega^{2}-\bar{u}=\bar{H}(\omega) \cdot a \pi \cdot \bar{\sigma}_{O C}-\bar{W}(\omega) \cdot a \pi \bar{\tau}_{O B}
\end{align*}
$$

However, because of the symmetry of the disc in the x and y directions
the accolorations in the x and y directions can be combined vectorially thus

$$
\begin{equation*}
\bar{n}(u)=n_{x}+i a_{y} \tag{4.2}
\end{equation*}
$$

where i is $e^{i \frac{\pi}{2}}$, a unit vector in the y direction; $\bar{\sigma}_{o c}, \vec{\gamma}_{o s}, \bar{\tau}_{o c}$ and $\vec{\tau}_{O S}$ can 1ikawias be defined in the manner of equation 3.17 and 3.18 as

$$
\begin{align*}
& \bar{\sigma}_{o}(\omega)=\bar{\sigma}_{O C}+1 \bar{\sigma}_{O B} \tag{4,3}\\
& \bar{\tau}_{o}(\omega)=\bar{\tau}_{o c}+1 \bar{\tau}_{O B}
\end{align*}
$$

then equation 4.1 can be expressed as

$$
\begin{equation*}
\bar{a}(\omega)=a \pi \cdot \bar{H}(\omega) \cdot \bar{\sigma}_{a}+1 a \pi \bar{W}(\omega) \cdot \bar{T}_{0} \tag{4.4}
\end{equation*}
$$

The acceleration in the ame ingtantaneous direction as the force given by Re $\{\bar{a}(\omega)\}$. While the acceleration leading the trice by $\frac{\pi}{2}$ is given as

$$
\begin{equation*}
\operatorname{Im}\{\bar{a}(\omega)\} \tag{4,5}
\end{equation*}
$$

The Fourier Transform of the acceleration vector $\bar{a}(\omega)$, resulting from the rotating oscillatory Brces P(normal) and Q (shear), is found by substituting for $\bar{\sigma}_{o}$ and $\bar{\tau}_{0}$ (from oquations 3.17 and 3.18) into equation 4.4 giving

$$
\begin{equation*}
a(\omega)=(\pi P \cdot \widetilde{H}(\omega)+1 \pi Q \bar{W}(\omega))(\delta(\omega+\alpha-\Omega)+\delta(\omega-\alpha-\Omega)) . \tag{4.6}
\end{equation*}
$$

The response in the time domain is found by taking the inverse Fourier trankform of equation 4.6 i.e.

$$
\begin{equation*}
\bar{a}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \vec{a}(\omega) e^{1 \omega t} d \omega \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{a}(t)=\frac{1}{2} \int_{-\infty}^{\infty}(\mathrm{P} \cdot \overline{\mathrm{H}}(\omega)+1 Q \cdot \bar{W}(\omega) \cdot) \cdot\left(\delta(\omega+\alpha-\Omega)+(\omega-\alpha-\Omega) e^{i} d \omega\right. \tag{4.8}
\end{equation*}
$$

which on performing the integral gives

$$
\begin{aligned}
a(t)= & (P \bar{H}(-\alpha+\Omega)+1 Q \bar{W}(-\alpha+\Omega)) e^{-i(\alpha-\Omega) t} \\
& +\frac{1}{2}(P \bar{H}(\alpha+\Omega)+1 Q \bar{W}(\alpha+\Omega)) e^{1(\alpha+\Omega) t}
\end{aligned}
$$

It is poasible to procede further by making the following simplication. $\bar{H}(\omega)$ and $\bar{W}(\omega)$ are complex functions of (ω) having both a real and imaginary component. For physical structures the real component of the inertance is aymmetrical about the $\omega=0$ point, while the imaginary component of inertance i_{s} assymetrical about $\omega=0$. Therefore the atmple relationship exists that

$$
\begin{equation*}
\overline{\mathrm{H}} *(w)=\bar{H}(-w) \tag{4.10}
\end{equation*}
$$

where * denotes the complex conjugate.

On maxing this substitution into Equation 4.9 the complex acceleration in the time domain, namely

$$
\begin{equation*}
\vec{a}(t)=a_{x}(t)+1 a_{y}(t) \tag{4.11}
\end{equation*}
$$

becomes

$$
\begin{align*}
& -(t)=1\left(P-\bar{W}(\alpha-\Omega)+1 \bar{W}^{*}(\alpha-\Omega)^{-1(\alpha-\Omega) t}\right. \\
& \overline{\mathrm{a}}(\mathrm{t})=1\left(\mathrm{P} \cdot \bar{H}^{*}(\alpha-\Omega)+1 Q \bar{W}^{*}(\alpha-\Omega) / \mathrm{e}\right. \tag{4.12}\\
& 1(\alpha+\Omega) t \\
& +\frac{1}{1}(\bar{H}(\alpha+\Omega)+1 q \bar{W}(\alpha+\Omega)) e
\end{align*}
$$

If an inclined force $\overline{\mathrm{F}}$ acting on the rim has normal and shear force components as shown below

P and Q can be replaced by

$$
\begin{align*}
& P=F \cos \varphi \tag{4.23}\\
& Q=F \sin \varphi
\end{align*}
$$

4. 1 Specinl Cases of the Reaponse at the Centre of the Disc

The goneral expresaion for the rasponse of the diac can be simpififed for a fow special cases:
(1) at low fraquencies when $k_{2^{n}}<I$ the disc moves as a rigid body, and $\bar{H}(\omega), \overline{H^{*}}(\omega), \bar{W}(\omega)$ and $\overline{W^{*}}(\omega)$ are all equal to $\frac{1}{m}$, as in Figure 15 between points a and b. The response at the centre of the diac to a force inclined at ρ radians from the normal is given from oquations 4.12 and 4.13 as

$$
\begin{equation*}
\bar{n}(t)=\frac{F}{m} e^{t(9+\Omega t)} \cos \alpha t \tag{4.14}
\end{equation*}
$$

where the applied force vector was

$$
\begin{equation*}
F e^{i(\rho+\Omega t)} \cdot \cos \alpha t \tag{4,1.5}
\end{equation*}
$$

The response in the x and y directions are modulated cosine waves

$$
\begin{align*}
& a_{x}(t)=\frac{F}{m} \cos (\phi+\Omega t) \cos \alpha t \tag{4.16}\\
& a_{y}(t)=\frac{F}{m} \sin (\phi+\Omega t) \cos \alpha t
\end{align*}
$$

as shown in the figure below

The acceleration tragectory on the x-y plane of an oscilloscope screen would be, for $\alpha=8 \Omega$,

(11) Between points b and c in Figure 15 it can be seen that the shearing force transfer inertance $\bar{W}(w)$ is much greater than the direct force transfer inertance. The transfer function $\bar{W}(\omega)$ changes only gradually with frequency, therefore $\bar{W}(\alpha+\Omega)=\bar{W}(\alpha-\Omega)$ for $\alpha \gg \Omega$. Also for frequencies outside the resonant regions $\bar{W}(\omega)=\bar{W} *(\omega)=|\bar{W} \quad(\omega)|$. Therefore in this region the response takes the form

$$
\bar{a}(t)=F \sin \phi \cdot|\bar{W}(\alpha)| \cdot e^{1\left(12 t+\frac{\pi}{2}\right)} \cos \alpha t
$$

Where the force vector was $F e^{i(\Omega t+\phi)}$ coset

The response therefore leads the force by an angle of $\frac{\pi}{2}-0$. For the alternative case when $\bar{H}(\omega) \gg \bar{W}(\omega)$ the responge would be

$$
\begin{equation*}
\bar{a}(t)=F \cos \phi \cdot|\stackrel{\rightharpoonup}{\mathrm{H}}(\omega)| \cdot e^{1 \Omega t} \cos \alpha t, \tag{4.18}
\end{equation*}
$$

indicating a lag of g behind the force vector In both cases the reaponses would take the form of the previous two figures.
(H) When the excitation Irequency $\alpha+\Omega$ is equal, or very cloae to a resonance frequency of the disc (for example point d, Figure 15) only the terms containing $a+\Omega$ in expression 4.12 are strongly orcited. The acceleration reaponse then takes the form

$$
\bar{a}(t) \approx \frac{F}{2}(\cos g \cdot \bar{H}(\alpha+\Omega)+1 s i n g \cdot \bar{W}(\alpha+\Omega)) e^{i(\alpha+\Omega) t}
$$

If it is now assumod that $\bar{H}(\alpha+\Omega)$ 1s neglected, on account of its relatively small aize; the acceleration responge can now be written as

$$
\bar{n}(t)=\frac{P}{2}|\bar{W}(\alpha+\Omega)| e^{i\left(\beta+(\alpha+\Omega) t+\frac{\pi}{2}\right)}
$$

where

$$
|\bar{W}(\alpha+\Omega)| e^{1 \beta}=\bar{W}(\alpha+\Omega)
$$

This is s vector rotating in the anti-clockwise direction at $\alpha+\Omega$ radians/sec, i.e. the reoponge, is due to the disc, in an $n=1$ mode shape spinning at $\alpha+\Omega$ rads/sec, as shown below

The precise phase depends strongly on β, which changes rapidly through the resonance region. The acceleration tragectory diaplayed in the x, y axis of an oscilloscope is a circle

When the other excitation frequency $\alpha-\Omega$ coincides with the resonance frequency thero is a similar regult except that the acceleration vector rotates in the clockwise direction.

4.2 Response at the Centre of the Rotating Dige

All the previous analyses have been concernod with a stationary disc aubject to a rotating force. Rowever, the initial intention of the work was to solve the vibrato of a rotating disc subject to a stationary oscillating forco. The general solution is ensily found by multipiying equation 4.12 by $e^{-i \Omega t}$ which effectively applies a clockwise rotation to the disc. The solution becomes

$$
\begin{equation*}
\bar{a}(t)=\frac{1}{2}\left(P \cdot \bar{H}^{*}(\alpha-\Omega)+1 Q \bar{W}^{*}(\alpha-\Omega)\right) e^{-1 \alpha t} \tag{4.20}
\end{equation*}
$$

$+\frac{1}{2}\left(P \cdot \bar{H}(\alpha+\Omega) 1 Q \bar{W}(\alpha+\Omega) e^{1 \alpha t}\right.$
to a forcing function $\mathrm{Fe}^{1 \emptyset_{c o s c t}}$.
(i) In the mass controlled region the response is

$$
\pi(t)=\frac{F}{m} e^{i \beta} \cdot \cos \alpha t
$$

(ii) In the non-resonant region, (see Equation 4.18) the response

18

$$
\vec{a}(t)=\frac{F}{2} \operatorname{aing}|\bar{w}(\omega)| \cdot e^{ \pm} \frac{\pi}{2} \text { cos at }
$$

(111) In the resonant: region (see Equation 4.19) the response is

$$
\begin{gathered}
\overrightarrow{\mathrm{A}}(\mathrm{t})=\frac{F}{2}|\bar{W}(\alpha+\Omega)| e^{1\left(\beta+\alpha t+\frac{\pi}{2}\right)} \quad\left(\alpha+\Omega=\text { resonance frequency, } \omega_{n}\right) \\
\text { or } \quad \vec{a}(t)=\frac{F}{2}|\bar{W}(\alpha-\Omega)| e^{1\left(-\beta-\alpha t+\frac{\pi}{2}\right)} \quad\left(a-\Omega=\text { resonance frequency } u_{n}\right)
\end{gathered}
$$

5.0 CONCLUSIONS

The results can be summarised into three sections, namely;
the transfer functions, the excitation, the response at the centre of the disc due to the oscillatiag rotating force.

5. 1 The Transfor Function

(1) The Transfor Function $\bar{H}(\omega)$ between a normal forco and the acceleration response in the same direction, at the centre of the disc is largely governed by the tilatational wave motion. When $k_{2} a<l$ the disc bohaves as a rigid mass. Resonances associated with the dilataticnal wave motion occur approximately when $J_{1}\left(k_{1} a\right)=0$.
(ii) The transfer function $\bar{W}(\omega)$ between a tangential force and the acceleration response in the same direction at the centre of the disc is dominated by the rotational wave transmission. This is reaponaible for the mass-like behaviour for $\mathrm{k}_{2} \mathrm{a}<1$. Resonances associated with rotational wave motion occur approximately when $J_{1}\left(k_{2} a\right)=0$.
(iii) The $\bar{W}(\omega)$ and $\bar{H}(\omega)$ transfer functions are comprised only of Bessel Functions of order one ($n=1$) (which are associated with $\cos \theta$ or $\sin \theta$ circumferential mode shape).
(iv) The first resonance frequency arises from rotational wave motion, when k_{2} a= 2.8 (for steel).
(v) In general, vibration transmission to the centre of the disc is greater from a tangential force than from a normal force (i.e. (W) tends to be greater than $\bar{H}(\omega))$.
(vi) Angular acceleration at the centre of the disc is solely caused by $n=0$ rotational modes of vibration (those which have no variation in the θ direction). When $k_{2}{ }_{2}<l$ the angular acceleration is controlied only by the disc moment of Inertia, Resonances occur approximately when $J_{2}\left(\mathrm{~s}_{2} a\right)=0$.

5.2 The Excitation Function

(1) A point force which oscillates at frequency arads/sec and rotates the disc in an anticlockwise direction of Srads/sec excites each mode at 2 different frequencies. A mode with n wavelengtha in the circumferential direction is excited by an anticlockwiso rotating strass diatribution at $\Omega+\alpha / \mathrm{n}$ rads/sec, and by a clockwise stress distribution at $\Omega-\alpha / n$ rads/sec. Each mode is excited at the eame level by a point force.
(i) The motion at the centre of the disc is only dependent upon the net force acting in the disc rim, and is independent of the road distribution.

5.3 The Rosponse at the Centre of the Disc

(1) For a rotating disc and a stationary oscillating force the accoleration at the centre of the disc is necesearily in phase with the applied force (whatever the direction) at the rim of the disc, when the disc moves as a rigid body ($k_{2}{ }^{n}<1$).
(11) When $k_{2}{ }^{a}>1$, if an inclined force is applied to the disc rim, the responge at the centre of the dise will move in a different direction from the applied force. The reaponse will nowever, be a vibration in a single direction provided a resonance is not excited.

Abstract

(iii) If the excitation frequency $n+\Omega$ rads/sec coincides with a rosonance froquency, the contre of the disc will adopt an anticlockwise circiling motion at a rads/sec. Lhewise if the excitation frequency $\alpha-\Omega$ rads/sec coincides with a resonance frequency the centre of the disc will ndopt a clockwise circing motion of α rads/aec.

1. Love A.E.H. Mathomatical Theory of Elasticity pp288 (Dover) New York.
2. Timoshenko S. and Goodier J.N. Theory of Elasticity (McGraw Hill).
3. A. Cemal Eringen. Response of an Elastic Disc to Impact and Moving Loads, Quart. Journal of Mechanics and Applied Mathematics Vol Vill Pt 4 (1956).
4. G. Ambati and J.J.W. Bell, J.C.K. Sharp. In plane vibrations of annular rings. J.S.V. (1976) $47(3), 415-432$.
5. V.Srinvasan and V. Ramanarti. Dynamic Response of an Annular Dibc to a Moving Concentrated, In-plane Edge Load. JSV (1980). 72(2) 251-262.
6. R.Holland. Numerical Studies of Elastic Disc contour modes lacking axial symmetry. JASA 1966, 40, 1051-1057.
7. E. Kreyszig. Advanced Engineering Mathematics, Chapter 3, John Wiley \& Sons Inc. 1972.
8. M. Abramowitz and J.A. Segan. Handbook of Mathematical Functions p.369-371, Dover Publications.

APPENDIX A1: Formulation of the Problem

Al. 1 The dyamic analyses of isotropic, homogeneous two dimensional solida ia best performed in terma of 'dilatation' E (or volume expansion) at a point and the 'rotation ψ at a point. Expressed in terms of cartesian co-ordinates for the element below

$$
e(x, y, t) \text { (the total element strain) }=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}
$$

$$
\psi(x, y, t) \text { (the avorage element rotation) }=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

Alternatively in plane polar coordinates, the displacements

$$
\begin{gather*}
\varepsilon(r, \theta, t)=\frac{1}{r}\left|\frac{\partial}{\partial r}(r u)+\frac{\partial v}{\partial \theta}\right| \\
\psi(r, \theta, t)=\frac{1}{2 r}\left|\frac{\partial}{\partial r}(r v)-\frac{\partial u}{\partial \theta}\right| \tag{A1,1}\\
\mu(r, \theta, t) v(r, \theta, t)
\end{gather*}
$$

Where u and v are the displacements in the r and θ directions, as geen in the figure below

The Hookes Law relationship on a plane polar element is given |Ref 1 p288| as

$$
\begin{aligned}
& \sigma_{r r}=\lambda \varepsilon+2 \mu \frac{\partial u}{\partial r}, \quad \sigma_{r \theta}=\frac{\mu}{r} \frac{\partial u}{\partial \theta}+\mu r \frac{\partial}{\partial r}\left(\frac{v}{r}\right) \\
& \sigma_{\theta \theta}=\lambda \varepsilon+2 \frac{\mu}{r} \cdot\left(\frac{\partial v}{\partial \theta}+u\right)
\end{aligned}
$$

where λ and μ are defined in $|1, p 11,497|$ for a thick disc, as

$$
\begin{equation*}
\lambda=\frac{v E}{(1+v)(1-2 v)}, \quad \nu=\frac{E}{2(1+v)}, \tag{A1.3}
\end{equation*}
$$

μ is the material shear modulua; however for a thin disc

$$
\lambda=\frac{v E}{\left(1-v^{2}\right)}, \mu=\frac{E}{2(1+v)}
$$

From the dynamic equilibrium of a plano polar element it can be shown |1 p28s| that the oquations of motion are

$$
\begin{align*}
& (\lambda+2 \mu) \frac{\partial \varepsilon}{\partial r}-\frac{2 \mu}{x} \frac{\partial \psi}{\partial \theta}=\rho \frac{\partial^{2} u}{\partial t^{2}} \tag{A1.4}\\
& (\lambda+2 \mu) \frac{1}{r} \cdot \frac{\partial \varepsilon}{\partial \theta}+2 \mu \frac{\partial \psi}{\partial r}=\rho \frac{\partial^{2} v}{\partial t^{2}}
\end{align*}
$$

where ρ is the material density.

Eliminating u and v using equations $A 1.1$ and $A 1.4$ leads to the two uncoupled wave equations for dildational and rotational motion.

$$
\begin{array}{ll}
\nabla^{2} \varepsilon=\frac{1}{c_{1}^{2}} \frac{\partial^{2} \varepsilon}{\partial t^{2}} & c_{1}^{2}=(\lambda+2 \mu) / \rho \\
\nabla^{2} \psi^{\prime}=\frac{1}{c_{2}^{2}} \frac{\partial^{2} / \hbar}{\partial t^{2}} & c_{2}^{2}=\mu / \rho \tag{A1.5}
\end{array}
$$

where C_{1} and C_{2} are the diatational and rotntional wavespocts and ∇^{2} is the Laplacian operator in plane polar coordinates i.e.

$$
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

The solution for the disc motion which conforms to the wave equations A15 must also satigly the boundary conditions at the rim of the disc i.e.

$$
\begin{equation*}
\sigma_{r r}(a, \theta, t)=\sigma_{0}(\theta, t), \sigma_{r \theta}(a, \theta, t)=\tau_{0}(\theta, t) \tag{A1.6}
\end{equation*}
$$

where σ_{0} and τ_{0} are the normal stress distributions and the shearing stress distributions applied to the rim in the direction indicated in Figure Al. It is assumed that no $0_{\theta \theta}$ stress is applied.

A1. 2 The Solution

If it is assumed that the time and space dependence of ψ and E are soparable functions, 1.e. ψ and ε each take the form $A(r, \theta), B(t)$ then Fourter Transforms may be taken at both sides of equation Al.5. giving

$$
\begin{array}{ll}
\left(\nabla^{2}+k_{1}^{2}\right) \bar{\varepsilon}=0 & k_{1}=\omega / c_{1} \\
\left(v^{2}+k_{2}^{2}\right) \bar{\psi}=0 & k_{2}=\omega / c_{2}
\end{array}
$$

whero the - denotes the Fourier Transform, defined as

$$
\begin{equation*}
\bar{\varepsilon}(\omega)=\int_{-\infty}^{\infty} \varepsilon(t) e^{-1 \omega t} d t \tag{A1.8}
\end{equation*}
$$

k_{1} and k_{2} are the wave numbers associated with the dilat ntional waves and the rotational waves.

It is now assumed that $\bar{\varepsilon}$ and $\bar{\psi}$ are each the product of two separable functions, one of r dependence and one of θ dependence f.e.

$$
\begin{equation*}
\bar{\varepsilon}=\vec{W}(r) \cdot \bar{Q}(\theta) \tag{A1,9}
\end{equation*}
$$

Substitution of A1.9 into Equation A1.7 results in the governing equations for the θ and r dependence:
and

$$
\frac{d^{2} Q}{d \theta^{2}}+n^{2} Q=0 \quad n=0,1,2,3, \ldots(A 1,10)
$$

$$
\begin{equation*}
r^{2} \frac{d^{2} W}{d r^{2}}+r \frac{d W}{d r}+\left(\left(k_{1} r\right)^{2}-n^{2}\right) W=0 \tag{A1.11}
\end{equation*}
$$

Equation Al. 10 is a second order differential equation which has a solution of the form

$$
\begin{equation*}
\bar{Q}(\theta)=c \cos n \theta+\text { Dain } n \theta \tag{A1,12}
\end{equation*}
$$

where C and D are constants. Equation $A l . l 1$ is Bessel's equation of order n which have solutions

$$
\begin{equation*}
\bar{W}_{n}\left(k_{1} r\right)=c_{n} J_{n}\left(k_{1} r\right)+D_{n} Y_{n}\left(k_{1} r\right) \tag{A1.13}
\end{equation*}
$$

where J_{n} and Y_{n} are Bessel functions of the first and second kind, C_{n} and D_{n} are constants. Y_{n} goes to infinity when $k_{1} r \rightarrow 0$ (at the centre of the diac) therefore $D_{n}=0$ for this problem.

The general solution for the dilatation and the rotation ds found by substituting equation $A 1.13$ and $A 1.12$ into $A 1,9$ and talcing the sum of the n solutions 1.e.

$$
\begin{align*}
& \bar{\varepsilon}=\sum_{n=0}^{\infty}\left(A_{2 n} \operatorname{sinn} \theta+A_{2 n} \cos n \theta\right) J_{n}\left(k_{1} r\right) \tag{AI.14}\\
& \bar{\psi}=\sum_{n=0}^{\infty}\left(B_{1 n} \cos n \theta-B_{2 n} \operatorname{sinn} \theta\right) J_{n}\left(k_{2} r\right)
\end{align*}
$$

$\Lambda_{1 n}, A_{2 n}, B_{1 n}, B_{2 n}$ are constante which are determined by the force distribution on the rim of the disc. Note that a cos ne or sin ne variation around the disc is associated with a J_{n} radial variation.

It can be seen irom equations $A 1,14$ that the dilatation at any point on the disc is entirely independent of the rotation. llowever the in plane displacements u, v, are a combination of dilatation and rotation effects and can be found $|1|$ by substituting A1.14 into Al. 1 (after taking Fourier Transforms of Al. I) and solving the resulting simultanoous partial differential equations to give:

$$
\begin{align*}
& \widetilde{u}(r)=\sum_{n=0}^{\infty} U_{1 n}(r) \sin n \theta+U_{2 n}(r) \cos n \theta \\
& \bar{v}(r)=\sum_{n=0}^{n} V_{1 n}(r) \cos n \theta-V_{2 n}(r) \operatorname{in} n \theta
\end{align*}
$$

where

$$
\begin{aligned}
&-r^{-1} U_{j n}(r)=A_{j n} \frac{1}{k_{1} r} \cdot J_{n}^{\prime}\left(k_{1} r\right)+B_{j n} \cdot \frac{2 n}{\left(k_{2} r\right)^{2}} \cdot J_{n}\left(k_{2} r\right) \\
&-r^{-1} v_{j n}(r)=A_{j n} \cdot \frac{n}{\left(k_{1} r\right)^{2}} \cdot J_{n}\left(k_{2} r\right)+B_{j n} \cdot \frac{2}{\left(k_{2} r\right)} \cdot J_{n}^{\prime}\left(k_{2} r\right) \\
& j=1,2 .
\end{aligned}
$$

The stresses at any point in the disc can be found by substituting Gqualions AI. 15 and Al. 14 into Al. 2 to obtaln,

$$
\begin{array}{r}
\bar{\sigma}_{r r}(2 \mu)=\sum_{n=0}^{\infty}\left[A_{1 n} N_{2 n}\left(k_{1} r\right)+B_{1 n} N_{2 n}\left(k_{2} r\right)\right] \sin n \theta+ \\
+\left[A_{2 n} N_{2 n}\left(k_{1} r\right)+B_{2 n} N_{2 n}\left(k_{2} r\right)\right] \cos n \theta \\
\sigma_{r \theta}(2 \mu)=\sum_{n=0}^{\infty}\left[A_{1 n} g_{1 n}\left(k_{1} r\right)+B_{1 n} s_{2 n}\left(k_{1} r\right)\right] \cos n \theta \\
\\
-\left[A_{2 n}{ }^{B} 1 n\left(k_{1} r\right)+B_{2 n} S_{2 n}\left(k_{1} r\right)\right] \sin n \theta
\end{array}
$$

$$
\bar{\sigma}_{\theta \theta}(2 \nu)=\sum_{n=0}^{\infty}\left[\Lambda_{1 n} T_{1 n}\left(k_{1} r\right)+B_{1 n} T_{2 n}\left(k_{2} r\right)\right] \sin n \theta+
$$

$$
+\left[A_{2 n} T_{1 n}\left(k_{1} r\right)+B_{2 n} T_{2 n}\left(k_{2} r\right)\right] \cos n \theta
$$

where

$$
\begin{align*}
N_{1 n}\left(k_{1} r\right)= & (\lambda / 2 \mu) J_{n}\left(k_{1} r\right)-J_{n}^{\prime \prime}\left(k_{1} r\right) \\
N_{2 n}\left(k_{2} r\right) & =\frac{2 n}{\left(k_{2} r\right)^{2}} \cdot J_{n}\left(k_{2} r\right)-\frac{2 n}{\left(k_{2} r\right)} \cdot J_{n}^{\prime}\left(k_{2} r\right) \\
S_{1 n}\left(k_{1} r\right) & =\frac{n}{\left(k_{1} r\right)^{2}} \cdot J_{n}\left(k_{1} r\right)-\frac{n}{k_{1} r} \cdot J_{n}^{\prime}\left(k_{1} s\right) \tag{A1.17}
\end{align*}
$$

$$
S_{2 n}\left(k_{2} r\right)=\left(1-\frac{2 n^{2}}{\left(k_{2} r\right)^{2}}\right) J_{n}\left(k_{2} r\right)+\frac{2}{k_{2} r} \cdot J_{n}^{\prime}\left(k_{2} r\right)
$$

$$
T_{1 n}\left(k_{1} r\right)=\left(\frac{\lambda}{2 \mu}\right) \cdot J_{n}\left(k_{1} r\right)+\frac{n^{2}}{\left(k_{1} r\right)^{2}} \cdot J_{n}\left(k_{1} r\right)-\frac{1}{k_{1} r} J_{n}^{\prime}\left(k_{1} r\right)
$$

$$
T_{2 n}\left(k_{2} r\right)=-N_{2 n}\left(k_{2} r\right)
$$

The constants $A_{1 n}, A_{2 n}, B_{1 n}$, and $B_{2 n}$ are all that are now required for a complete solution, and these are found by equating the Fourier Transform of the boundary conditions (Equation Al.b) to the equations Al. 16 namoly

$$
\begin{equation*}
\bar{\sigma}_{0}(\theta, w)=\bar{\sigma}_{r r}(a, \theta, w), \bar{\tau}_{0}(\theta, \omega)=\bar{\sigma}_{r \theta}(a, \theta, w) \tag{A1.18}
\end{equation*}
$$

and multiplying both atdes of equations $A 1.16$ by cos ne and sin ne and integrating over a range $0<\theta<2 \pi$. This procedure identifies the individual constants as

$$
\begin{align*}
& A_{1 n}=\left[2 \mu D_{n}\right]^{-1} \cdot\left[s_{2 n}\left(k_{2} a\right) \bar{\sigma}_{o s}-N_{2 n}\left(k_{2} a\right) \bar{\tau}_{o c}\right] \\
& B_{1 n}=\left[2 \mu D_{n}\right]^{-1} \cdot\left[-s_{1 n}\left(k_{1} a\right) \bar{\sigma}_{o s}+N_{1 n}\left(k_{1} a\right) \bar{T}_{o c}\right] \\
& A_{2 n}=\left[2 \mu D_{n}\right]^{-1} \cdot\left[-S_{2 n}\left(k_{1} a\right) \bar{\sigma}_{O C}+N_{2 n}\left(k_{2} a\right) \bar{\tau}_{o g} \mid\right. \\
& B_{2 n}=\left[2 \mu D_{n}\right]^{-1} \cdot\left[-S_{1 n}\left(k_{1} a\right) \bar{\sigma}_{o c}-N_{1 n}\left(k_{1} a\right) \bar{\tau}_{o B}\right] \tag{A1.19}\\
& n=1,2,3 \ldots \ldots \\
& A_{j o}=\left|A_{j n}\right|_{n=0} \quad B_{j o}=\left.A_{B_{n n}}\right|_{n=0} \quad j=1,2 \\
& D_{n}=N_{1 n}\left(k_{1} a\right) S_{2 n}\left(k_{2} a\right)-N_{2 n}\left(k_{2} a\right) S_{1 n}\left(k_{1} a\right)
\end{align*}
$$

whero

$$
\begin{align*}
& \vec{\sigma}_{o c}=\frac{1}{\pi} \int_{0}^{2 \pi} \bar{\sigma}_{0}(\theta, \omega) \cos n \theta d \theta \tag{A1.20}\\
& \bar{\sigma}_{o s}=\frac{1}{\pi} \int_{0}^{2 \pi} \bar{\sigma}_{0}(\theta, \omega) \sin n \theta d \theta
\end{align*}
$$

$\bar{\tau}_{o c}$ and $\bar{\tau}_{o g}$ are simtlarly defined.

$\mathrm{k}_{1 / \mathrm{k}_{2}}$.706 0	.666 .1	.612 .2	.55 .28	.503 .33	.403 .4	0 .5	Mode
	$\underline{2.48}$	$\underline{2.58}$	$\underline{2.69}$	2.79	2.85	2.94	3.05	1.1
	5.01	5.31	5.78	6.318	6.54.			1.1
	6.74	6.75	6. 80	6.99	7.441)	6.6	6.71	2.1.
	9.60	9.87						2.1
	10.09	10.42	9.94	9,96	9.97	9.21	9.97	.3,1
			11.28	12.56		10.03		
	13.15	13.15	13.17	13.20	. 13.13	13.14	13.27	4.1
	14.28	15.14	16.27		13.82			
	$\underline{16.34}$	16.34	16.58	16.34	16.37	16.32	16.34	5.1
	18.57	19.49		18.36		17.29		
	19.52	19.93	19.50	19.52	19.49	$\underline{19.51}$	19.51	6.1

TABLE 1: $k_{2} a$ as a function of Poissons ratio for the $(m, 1)$ modes of dilatitional and rotation of a thick disc (cylinder)

$$
\begin{aligned}
& k_{2}=2 \pi f j \frac{2 \rho(1+v)}{E} \\
& \frac{k_{1}}{k_{2}}=\sqrt{\frac{1-2 v}{2-2 v}}
\end{aligned}
$$

$$
\begin{aligned}
& (m, l)=\text { rotational mode } \\
& (m, l)=\text { dilatational mode }
\end{aligned}
$$

TABLE 2: (Holland $|4|, k_{1} a$ as a function of Poissons ratio v for the ($m, 1$) modes of dilatntion and
rotation of a thin disc

TABLE 3: k_{2} a for the $(m, 0)$ rotational modes of vibration

 of a thin or thick disc| Mode | k_{4} |
| :--- | :---: |
| 1,0 | 5.136 |
| 2,0 | 8.418 |
| 3,0 | 11.621 |
| 4,0 | 14.795 |
| 5,0 | 17.96 |
| | $k_{2}^{a}=$ |

FIGURE 1: Complex Bessel function of the first kind of order 1 , $\mathrm{J}_{1}(x(1-.01 i))$

FIGURE 2: Complax Bessel Function of the first find of order 2, $J_{2}(x(1-.011))$

